GLOBAL WEAK SOLUTIONS TO A CHEMOTAXIS-NAVIER-STOKES SYSTEM IN R3

被引:10
作者
Kang, Kyungkeun [1 ]
Lee, Jihoon [2 ]
Winkler, Michael [3 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 03722, South Korea
[2] Chung Ang Univ, Dept Math, Seoul 03722, South Korea
[3] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
关键词
Chemotaxis; Navier-Stokes; quasi-energy inequality; weak solutions; FLUID SYSTEM; EXISTENCE; MODEL; BEHAVIOR;
D O I
10.3934/dcds.2022091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem in R-3 for the chemotaxis-Navier-Stokes system {n(t) + u . del n = Delta n - del . (n del c), c(t) + u . del c = Delta c - nc, u(t) + (u . del)u = Delta u + del P + n del phi, del . u = 0, is considered. Under suitable conditions on the initial data (n(0), c(0), u(0)), with regard to the crucial first component requiring that n(0) is an element of L-1 (R-3) be nonnegative and such that (n(0) + 1) ln(n(0) + 1) is an element of L-1 (R-3), a globally defined weak solution with (n, c, u)vertical bar(t=0) = (n(0), c(0), u(0)) is constructed. Apart from that, assuming that moreover integral(R3) n(0)(x) ln(1 + vertical bar x vertical bar(2))dx is finite, it is shown that a weak solution exists which enjoys further regularity features and preserves mass in an appropriate sense.
引用
收藏
页码:5201 / 5222
页数:22
相关论文
共 26 条
[1]   Global classical solutions for chemotaxis-fluid systems in two dimensions [J].
Ahn, Jaewook ;
Kang, Kyungkeun ;
Yoon, Changwook .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) :2254-2264
[2]  
Calvez V, 2008, COMMUN MATH SCI, V6, P417, DOI 10.4310/CMS.2008.v6.n2.a8
[3]   Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities [J].
Cao, Xinru ;
Lankeit, Johannes .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[4]   A regularity condition and temporal asymptotics for chemotaxis-fluid equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon ;
Lee, Ki-Ahm .
NONLINEARITY, 2018, 31 (02) :351-387
[5]   ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) :127-146
[6]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[7]   EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2271-2297
[8]   Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion [J].
Chung, Yun-Sung ;
Kang, Kyungkeun .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (04)
[9]   Self-concentration and large-scale coherence in bacterial dynamics [J].
Dombrowski, C ;
Cisneros, L ;
Chatkaew, S ;
Goldstein, RE ;
Kessler, JO .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :098103-1
[10]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673