3-Designs from all Z4-Goethals-like codes with block size 7 and 8

被引:1
作者
Lahtonen, Jyrki
Ranto, Kalle [1 ]
Vehkalahti, Roope
机构
[1] Univ Turku, Dept Math, FIN-20014 Turku, Finland
[2] Turku Ctr Comp Sci TUCS, FIN-20014 Turku, Finland
基金
芬兰科学院;
关键词
t-Design; Goethals code; quaternary code; Dickson polynomial; linearized polynomial;
D O I
10.1016/j.ffa.2006.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a family of simple 3-(2(m), 8, 14(2(m) - 8)/3) designs, with odd m >= 5, from all Z(4)-Goethals-like codes G(k). In addition, these designs imply the existence of other design families with the same parameters as the designs constructed from the Z(4)-Goethals code G(1), i.e. the designs with a block size 7 by Shin, Kumar, and Helleseth and the designs with a block size 8 by Ranto. In the existence proofs we count the number of solutions to certain systems of equations over finite fields and use properties of Dickson and linearized polynomials. Also, the nonequivalence of the designs from different Goethals-like codes is considered. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:815 / 827
页数:13
相关论文
共 15 条
[1]  
Charpin P, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P963
[2]   Releasing rain forest succession: A case study in the Dicranopteris linearis fernlands of Sri Lanka [J].
Cohen, AL ;
Singhakumara, BMP ;
Ashton, PMS .
RESTORATION ECOLOGY, 1995, 3 (04) :261-270
[3]  
Goss David, 1998, Basic structures of function field arithmetic
[4]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[5]  
Helleseth T., 1996, Designs, Codes and Cryptography, V9, P257, DOI 10.1007/BF00129768
[6]  
Helleseth T, 2004, J COMPLEXITY, V20, P297, DOI [10.1016/j.jco.2003.08.024, 10.1016/j.jco.2003.08.022]
[7]   The algebraic decoding of the Z(4)-linear Goethals code [J].
Helleseth, T ;
Kumar, PV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :2040-2048
[8]   On t-designs from codes over Z4 [J].
Helleseth, T ;
Rong, CM ;
Yang, KC .
DISCRETE MATHEMATICS, 2001, 238 (1-3) :67-80
[9]  
LAHTONEN J, 2005, INT WORKSH COD CRYPT, P425
[10]  
Lidl R., 1983, ENCY MATH APPL, V20