Some properties of Hermite-based Sheffer polynomials

被引:16
作者
Khan, Subuhi [1 ]
Al-Saad, Mustafa Walid [1 ]
Yasmin, Ghazala [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Monomiality principle; Hermite polynomials; Sheffer polynomials; Hermite-Sheffer polynomials; GENERALIZED POLYNOMIALS; OPERATIONAL IDENTITIES; MONOMIALITY PRINCIPLE;
D O I
10.1016/j.amc.2010.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the concepts and the formalism associated with monomiality principle and Sheffer sequences are used to introduce family of Hermite-based Sheffer polynomials. Some properties of Hermite-Sheffer polynomials are considered. Further, an operational formalism providing a correspondence between Sheffer and Hermite-Sheffer polynomials is developed. Furthermore, this correspondence is used to derive several new identities and results for members of Hermite-Sheffer family. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2169 / 2183
页数:15
相关论文
共 33 条
[21]  
DATTOLI G, APPELL POLYNOMIAL SE
[22]  
Dattoli G., 2000, P MELF SCH ADV TOP M, V1, P147
[23]   OPERATIONAL FORMULAS CONNECTED WITH 2 GENERALIZATIONS OF HERMITE POLYNOMIALS [J].
GOULD, HW ;
HOPPER, AT .
DUKE MATHEMATICAL JOURNAL, 1962, 29 (01) :51-+
[24]  
Jordan C., 1965, Calculus of finite differences, V33
[25]   Hermite-based Appell polynomials: Properties and applications [J].
Khan, Subuhi ;
Yasmin, Ghazala ;
Khan, Rehana ;
Hassan, Nader Ali Makboul .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) :756-764
[26]   A NEW CLASS OF ORTHOGONAL POLYNOMIALS - THE BESSEL POLYNOMIALS [J].
KRALL, HL ;
FRINK, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 65 (JAN) :100-115
[27]   GENERALISATION OF HERMITE POLYNOMIALS [J].
LAHIRI, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 27 (01) :117-&
[28]   Monomiality principle, Sheffer-type polynomials and the normal ordering problem [J].
Penson, K. A. ;
Blasiak, P. ;
Dattoli, G. ;
Duchamp, G. H. E. ;
Horzela, A. ;
Solomon, A. I. .
SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER (SSPCM 2005): PROCEEDINGS OF THE 8TH INTERNATIONAL SCHOOL ON THEORETICAL PHYSICS, 2006, 30 :86-+
[29]  
Rainville E. D., 1960, Special Functions
[30]  
Roman S., 1984, The umbral calculus