Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing

被引:59
作者
Peng, Xuan [1 ,2 ]
Zhou, Jing [3 ]
Wang, Wenchuan [4 ]
Cao, Dapeng [4 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou 510640, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[4] Beijing Univ Chem Technol, Key Lab Nanomat, Minist Educ, Div Mol & Mat Simulat, Beijing 100029, Peoples R China
关键词
MONTE-CARLO-SIMULATION; COVALENT ORGANIC FRAMEWORKS; ACTIVATED CARBON; HYDROGEN STORAGE; GIBBS ENSEMBLE; PORE-SIZE; NANOSTRUCTURED CARBON; MOLECULAR SIMULATION; NANOTUBE ARRAYS; SLIT PORES;
D O I
10.1016/j.carbon.2010.06.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We perform a molecular simulation study on methane and carbon dioxide storage in carbon nanoscrolls. The effects of temperature and pressure, interlayer spacing, VDW gap and innermost radius on the gas storage have been examined extensively. It is found that the adsorption of gases on pristine carbon nanoscrolls is relatively low. However, once the interlayer spacing is expanded, both adsorption capacities of methane and carbon dioxide exhibit a significant improvement. In particular, the excess uptake of methane reaches 13 mmol/g at p = 6.0 MPa and T = 298.15 K and VDW gap Delta = 1.1 nm, which is about 3.5 times of uptake of the pristine carbon nanoscrolls; while the uptake of carbon dioxide could also be raised by 294.9% at T = 298.15 K and p = 3.0 MPa and Delta = 1.5 nm, reaching 30.21 mmol/g at 6.0 MPa. This work demonstrates that carbon nanoscrolls with an expansion of interlayer spacing may be a suitable material for methane storage and carbon dioxide capture. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3760 / 3768
页数:9
相关论文
共 42 条
[1]   Methane storage in activated carbon fibres [J].
AlcanizMonge, J ;
delaCasaLillo, MA ;
CazorlaAmoros, D ;
LinaresSolano, A .
CARBON, 1997, 35 (02) :291-297
[2]  
Allen M. P., 2017, COMPUTER SIMULATION
[3]   Molecular screening of metal-organic frameworks for CO2 storage [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
LANGMUIR, 2008, 24 (12) :6270-6278
[4]   Single-wall nanostructured carbon for methane storage [J].
Bekyarova, E ;
Murata, K ;
Yudasaka, M ;
Kasuya, D ;
Iijima, S ;
Tanaka, H ;
Kahoh, H ;
Kaneko, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (20) :4681-4684
[5]   Carbon dioxide capture and storage [J].
Benson, Sally M. ;
Orr, Franklin M., Jr. .
MRS BULLETIN, 2008, 33 (04) :303-305
[6]   Optimum conditions for adsorptive storage [J].
Bhatia, SK ;
Myers, AL .
LANGMUIR, 2006, 22 (04) :1688-1700
[7]   Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study [J].
Braga, S. F. ;
Coluci, V. R. ;
Baughman, R. H. ;
Galvao, D. S. .
CHEMICAL PHYSICS LETTERS, 2007, 441 (1-3) :78-82
[8]   Structure and dynamics of carbon nanoscrolls [J].
Braga, SF ;
Coluci, VR ;
Legoas, SB ;
Giro, R ;
Galvao, DS ;
Baughman, RH .
NANO LETTERS, 2004, 4 (05) :881-884
[9]   Lithium-Doped 3D Covalent Organic Frameworks: High-Capacity Hydrogen Storage Materials [J].
Cao, Dapeng ;
Lan, Jianhui ;
Wang, Wenchuan ;
Smit, Berend .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (26) :4730-4733
[10]   Determination of pore size distribution and adsorption of methane and CCl4 on activated carbon by molecular simulation [J].
Cao, DP ;
Wang, WC ;
Shen, ZG ;
Chen, JF .
CARBON, 2002, 40 (13) :2359-2365