Control of a redox reaction on lipid bilayer surfaces by membrane dipole potential

被引:30
作者
Alakoskela, JMI [1 ]
Kinnunen, PKJ [1 ]
机构
[1] Univ Helsinki, Inst Biomed, Dept Med Chem, Helsinki Biophys & Biomembrane Grp, FIN-00014 Helsinki, Finland
基金
英国医学研究理事会;
关键词
D O I
10.1016/S0006-3495(01)76014-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Nitro-2,1,3-benzoxadiazol-4-yl (NBD) group is a widely used, environment-sensitive fluorescent probe. The negatively charged dithionite rapidly reduces the accessible NBD-labeled lipids in liposomes to their corresponding nonfluorescent derivatives. In this study both the phospholipid headgroup and acyl chain NBD-labeled L-alpha -1,2-dipalmitoyl-sn-glycero-3-phospho-[N-(4-nitrobenz-2-oxa-1,3-diazole)-ethanolamine] (DPPN) and 1-acyl-2-[12-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC), respectively, were employed. The correlation of both the rate coefficient k(1) of the redox reaction and the fluorescence properties of the two probes with the membrane dipole potential Psi in fluid dipalmitoylglycerophosphocholine (DPPC) liposomes is demonstrated. When Psi of the bilayer was varied (decreased by phloretin or increased by 6-ketocholestanol), the value for k(1) decreased for both DPPN and NBD-PC with increasing Psi. For both fluorophores a positive correlation to Psi was evident for the relative fluorescence emission intensity (RFI, normalized to the emission of the fluorophore in a DPPC matrix). The relative changes in emission intensity as a function of Psi were approximately equal for both NBD derivatives. Changes similar to those caused by phloretin were seen when dihexadecylglycerophosphocholine (DHPC) was added to DPPC liposomes, in keeping with the lower dipole potential for the former lipid compound compared with DPPC. These effects of Psi on NBD fluorescence should be taken into account when interpreting data acquired using NBD-labeled lipids as fluorescent probes.
引用
收藏
页码:294 / 304
页数:11
相关论文
共 71 条
[1]   EXTENSION OF THE PARALLAX ANALYSIS OF MEMBRANE PENETRATION DEPTH TO THE POLAR-REGION OF MODEL MEMBRANES - USE OF FLUORESCENCE QUENCHING BY A SPIN-LABEL ATTACHED TO THE PHOSPHOLIPID POLAR HEADGROUP [J].
ABRAMS, FS ;
LONDON, E .
BIOCHEMISTRY, 1993, 32 (40) :10826-10831
[2]   Ion permeability of a membrane with soft polar interfaces .1. The hydrophobic layer as the rate-determining step [J].
Aguilella, V ;
Belaya, M ;
Levadny, V .
LANGMUIR, 1996, 12 (20) :4817-4827
[3]   EFFECT OF PHLORETIN ON PERMEABILITY OF THIN LIPID-MEMBRANES [J].
ANDERSEN, OS ;
FINKELSTEIN, A ;
KATZ, I ;
CASS, A .
JOURNAL OF GENERAL PHYSIOLOGY, 1976, 67 (06) :749-771
[4]   INTERACTION OF ELECTRIC DIPOLES WITH PHOSPHOLIPID HEAD GROUPS - A H-2 AND P-31 NMR-STUDY OF PHLORETIN AND PHLORETIN ANALOGS IN PHOSPHATIDYLCHOLINE MEMBRANES [J].
BECHINGER, B ;
SEELIG, J .
BIOCHEMISTRY, 1991, 30 (16) :3923-3929
[5]   DIPOLE POTENTIAL OF LIPID-MEMBRANES [J].
BROCKMAN, H .
CHEMISTRY AND PHYSICS OF LIPIDS, 1994, 73 (1-2) :57-79
[6]   Dipole potentials and spontaneous curvature: membrane properties that could mediate anesthesia [J].
Cafiso, DS .
TOXICOLOGY LETTERS, 1998, 101 :431-439
[7]   THE USE OF EXOGENOUS FLUORESCENT-PROBES FOR TEMPERATURE-MEASUREMENTS IN SINGLE LIVING CELLS [J].
CHAPMAN, CF ;
LIU, Y ;
SONEK, GJ ;
TROMBERG, BJ .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1995, 62 (03) :416-425
[8]   SPECTROSCOPIC AND IONIZATION PROPERTIES OF N-(7-NITROBENZ-2-OXA-1,3-DIAZOL-4-YL)-LABELED LIPIDS IN MODEL MEMBRANES [J].
CHATTOPADHYAY, A ;
LONDON, E .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 938 (01) :24-34
[9]   PARALLAX METHOD FOR DIRECT MEASUREMENT OF MEMBRANE PENETRATION DEPTH UTILIZING FLUORESCENCE QUENCHING BY SPIN-LABELED PHOSPHOLIPIDS [J].
CHATTOPADHYAY, A ;
LONDON, E .
BIOCHEMISTRY, 1987, 26 (01) :39-45
[10]   CHEMISTRY AND BIOLOGY OF N-(7-NITROBENZ-2-OXA-1,3-DIAZOL-4-YL)-LABELED LIPIDS - FLUORESCENT-PROBES OF BIOLOGICAL AND MODEL MEMBRANES [J].
CHATTOPADHYAY, A .
CHEMISTRY AND PHYSICS OF LIPIDS, 1990, 53 (01) :1-15