ON OPTIMAL ARBITRAGE

被引:37
作者
Fernholz, Daniel [1 ]
Karatzas, Ioannis [2 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[2] INTECH Investment Management, Princeton, NJ 08542 USA
基金
美国国家科学基金会;
关键词
Portfolios; arbitrage; parabolic operators; maximum principle; strict local martingales; exit measures for supermartingales; diffusions; Fichera drift;
D O I
10.1214/09-AAP642
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a Markovian model for a financial market, we characterize the best arbitrage with respect to the market portfolio that can be achieved using nonanticipative investment strategies, in terms of the smallest positive solution to a parabolic partial differential inequality; this is determined entirely on the basis of the covariance structure of the model. The solution is intimately related to properties of strict local martingales and is used to generate the investment strategy which realizes the best possible arbitrage. Some extensions to non-Markovian situations are also presented.
引用
收藏
页码:1179 / 1204
页数:26
相关论文
共 33 条
[1]  
[Anonymous], HDB NUMERICAL ANAL M
[2]  
[Anonymous], 2006, Stochastic Differential Equations and Applications
[3]  
[Anonymous], THESIS COLUMBIA U
[4]  
[Anonymous], 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[5]   Short-term relative arbitrage in volatility-stabilized markets [J].
Banner, Adrian D. ;
Fernholz, Daniel .
ANNALS OF FINANCE, 2008, 4 (04) :445-454
[6]   Degenerate stochastic differential equations with Holder continuous coefficients and super-M arkov chains [J].
Bass, RF ;
Perkins, EA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (01) :373-405
[7]   ARBITRAGE POSSIBILITIES IN BESSEL PROCESSES AND THEIR RELATIONS TO LOCAL MARTINGALES [J].
DELBAEN, F ;
SCHACHERMAYER, W .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (03) :357-366
[8]  
Delbaen F., 1995, STOCHASTICS STOCHAST, V53, P213
[9]  
EKSTROM E, 2008, NUMERICAL OPTION PRI
[10]  
FERNHOLZ E. R., 2002, APPL MATH, V48