Greedy algorithm for general biorthogonal systems

被引:131
作者
Wojtaszczyk, P [1 ]
机构
[1] Univ Warsaw, Inst Matemat, PL-02097 Warsaw, Poland
关键词
quasi-greedy basis; conditional basis; biorthogonal system; Haar system;
D O I
10.1006/jath.2000.3512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider biorthogonal systems in quasi-Banach spaces such that the greedy algorithm converges for each x is an element of X (quasi-greed systems). We construct quasi-greedy conditional bases ina wide range of Banach spaces. We also compare the greed algorithm for the multidimensional Haar system wit the optimal m-term approximation for this system. This substantiates a conjecture by Temlyakov. (C) 2000 Academic Press.
引用
收藏
页码:293 / 314
页数:22
相关论文
共 13 条
[1]  
[Anonymous], 1997, LONDON MATH SOC STUD
[2]  
Gurarii V. I., 1971, IZV AKAD NAUK SSSR M, V35, P210
[3]  
Kalton N. J., 1984, LONDON MATH SOC LECT, V89
[4]   UNIQUENESS OF UNCONDITIONAL BASES IN QUASI-BANACH SPACES WITH APPLICATIONS TO HARDY-SPACES [J].
KALTON, NJ ;
LERANOZ, C ;
WOJTASZCZYK, P .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 72 (03) :299-311
[5]  
KONYAGIN SV, REMARK GREEDY APPROX
[6]  
Kostyukovsky S., 1997, J APPL ANAL, V3, P137
[7]  
LINDENSTRAUSS J, 1977, CLASSICAL BANACH SPA, V1
[8]  
OLVESKII AM, 1975, FOURIER SERIES RESPE
[9]  
Pelczynski A., 1960, Studia Math, V19, P209, DOI [10.4064/sm-19-2-209-228, DOI 10.4064/SM-19-2-209-228]
[10]  
Temlyakov V. N., 1998, E J APPROX, V4, P87