Infrared and visible image fusion with ResNet and zero-phase component analysis

被引:254
作者
Li, Hui [1 ]
Wu, Xiao-jun [1 ]
Durrani, Tariq S. [2 ]
机构
[1] Jiangnan Univ, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Jiangsu, Peoples R China
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
关键词
Image fusion; Deep learning; Residual network; Zero-phase component analysis; Infrared image; Visible image; SHEARLET TRANSFORM;
D O I
10.1016/j.infrared.2019.103039
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In image fusion approaches, feature extraction and processing are key tasks, and the fusion performance is directly affected by the different features and processing methods undertaken. However, most of deep learning-based methods use deep features directly without them. This leads to the fusion performance degradation in some cases. To solve these drawbacks, in our paper, a deep features and zero-phase component analysis (ZCA) based novel fusion framework is proposed. Firstly, the residual network (ResNet) is used to extract deep features from source images. Then ZCA and l(1)-norm are utilized to normalize the deep features and obtain initial weight maps. The final weight maps are obtained by employing a soft-max operation in association with the initial weight maps. Finally, the fused image is reconstructed using a weighted-averaging strategy. Compared with the existing fusion methods, experimental results demonstrate that the proposed framework achieves better performance in both objective assessment and visual quality. The code of our fusion algorithm is available at https://github.com/hli1221/imagefusion_resnet50.
引用
收藏
页数:10
相关论文
共 39 条
[1]  
[Anonymous], 8 IEEE INT C APPL IN
[2]  
[Anonymous], 2015, ICLR
[3]  
[Anonymous], 2017, P INT C NEUR INF PRO
[4]  
[Anonymous], TNO IMAGE FUSION DAT
[5]  
[Anonymous], 2012 5 INT C IM SIGN
[6]  
[Anonymous], ELECT LETT
[7]  
[Anonymous], 2015, SIGNAL IMAGE VIDEO P
[8]   A new image quality metric for image fusion: The sum of the correlations of differences [J].
Aslantas, V. ;
Bendes, E. .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2015, 69 (12) :160-166
[9]   Two-scale image fusion of visible and infrared images using saliency detection [J].
Bavirisetti, Durga Prasad ;
Dhuli, Ravindra .
INFRARED PHYSICS & TECHNOLOGY, 2016, 76 :52-64
[10]  
Ben Hamza A, 2005, INTEGR COMPUT-AID E, V12, P135