On uniqueness of meromorphic functions sharing finite sets

被引:88
作者
Fujimoto, H [1 ]
机构
[1] Kanazawa Univ, Fac Sci, Dept Math, Kanazawa, Ishikawa 9201192, Japan
关键词
D O I
10.1353/ajm.2000.0045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first study conditions for a polynomial P(w) to satisfy the condition that P(f) = cP(g) implies f = g for any nonzero constant c and nonconstant meromorphic functions f and g on c. Next, we give some sufficient conditions for a finite set S to be a uniqueness range set, namely, to satisfy the condition that f(-1)(S) = g(-1)(S) implies f = g for any nonconstant meromorphic functions f and g on c. For a set S, we consider a polynomial P(w) of degree q := #S which vanishes on S. Let P'(w) have distinct k zeros d(1),...,d(k) and assume that k greater than or equal to 4. We show that, if q > 2k+ 12, P(d(l)) not equal P(d(m)) (1 less than or equal to l < m <less than or equal to> k) and P(d(1))+. . .+ P(d(k)) not equal 0, then S is a uniqueness range set and discuss some other related subjects.
引用
收藏
页码:1175 / 1203
页数:29
相关论文
共 9 条
[1]  
Bartels, 1999, COMPLEX VARIABLE THE, V39, P85, DOI DOI 10.1080/17476939908815183
[2]  
Frank G., 1998, Complex Var. Theory Appl, V37, P185, DOI DOI 10.1080/17476939808815132
[3]  
Fujimoto H., 1993, Aspect of Math., VE21
[4]   ON PRE-IMAGE AND RANGE SETS OF MEROMORPHIC FUNCTIONS [J].
GROSS, F ;
YANG, CC .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1982, 58 (01) :17-20
[5]  
Li P., 1995, Kodai Math. J., V18, P437, DOI DOI 10.2996/KMJ/1138043482
[6]   An unequivocal clause in the theory of meromorphic function [J].
Nevanlinna, R .
ACTA MATHEMATICA, 1927, 48 (3-4) :367-391
[7]  
SHIFFMAN B, UNPUB UNIQUENESS ENT
[8]  
YANG CC, 1997, MAT FIZ ANAL GEOM, V3, P391
[9]  
Yi HX., 1995, Complex Var. Elliptic Eq, V28, P13