Results on Atangana-Baleanu fractional semilinear neutral delay integro-differential systems in Banach space

被引:15
|
作者
Ma, Yong-Ki [1 ]
Williams, W. Kavitha [2 ]
Vijayakumar, V. [2 ]
Nisar, Kottakkaran Sooppy [3 ]
Shukla, Anurag [4 ]
机构
[1] Kongju Natl Univ, Dept Appl Math, Gongju 32588, Chungcheongnam, South Korea
[2] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[3] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[4] Rajkiya Engn Coll Kannauj, Dept Appl Sci, Kannauj 209732, India
基金
新加坡国家研究基金会;
关键词
Existence; Mild solutions; A-B derivative; Fractional derivatives and integrals; Semigroup theory; Fixed point theorem; CONTROLLABILITY; DERIVATIVES; EXISTENCE; EQUATIONS;
D O I
10.1016/j.jksus.2022.102158
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main focus of this manuscript is centered around Atangana-Baleanu semilinear neutral fractional integro-differential equations with finite delay. The main outcomes are demonstrated using the Monch fixed point theorem along with its results when the measure of non-compactness collaborates. Eventually, a demonstration example is proposed.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Discussion on the controllability results for fractional neutral impulsive Atangana-Baleanu delay integro-differential systems
    Williams, W. Kavitha
    Vijayakumar, V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [2] Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators
    Arjunan, M. Mallika
    Hamiaz, A.
    Kavitha, V
    CHAOS SOLITONS & FRACTALS, 2021, 149
  • [3] The averaging principle of Atangana-Baleanu fractional stochastic integro-differential systems with delay
    Dhayal, Rajesh
    Zhu, Quanxin
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3565 - 3576
  • [4] Fuzzy fractional delay integro-differential equation with the generalized Atangana-Baleanu fractional derivative
    Wang, Guotao
    Feng, Meihua
    Zhao, Xianghong
    Yuan, Hualei
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [5] Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type
    Vijayaraj, V.
    Ravichandran, C.
    Sawangtong, Panumart
    Nisar, Kottakkaran Sooppy
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 : 249 - 255
  • [6] Results on Impulsive Fractional Integro-Differential Equations Involving Atangana-Baleanu Derivative
    Karthikeyan, Kulandhivel
    Ege, Ozgur
    Karthikeyan, Panjayan
    FILOMAT, 2022, 36 (13) : 4617 - 4627
  • [7] A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic integro-differential system with infinite delay
    Dineshkumar, Chendrayan
    Joo, Young Hoon
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 9922 - 9941
  • [8] New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations
    Ravichandran, C.
    Logeswari, K.
    Jarad, Fahd
    CHAOS SOLITONS & FRACTALS, 2019, 125 : 194 - 200
  • [9] A new exploration on existence of fractional neutral integro-differential equations in the concept of Atangana-Baleanu derivative
    Logeswari, K.
    Ravichandran, C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 544
  • [10] Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay
    Aimene, D.
    Baleanu, D.
    Seba, D.
    CHAOS SOLITONS & FRACTALS, 2019, 128 : 51 - 57