Terminal sliding mode control for uncertain singular systems

被引:0
|
作者
Wang Cui-hong [1 ]
Huang Tian-min [1 ]
Yang Cheng-hu [1 ]
机构
[1] SW Jiaotong Univ, Dept Elect Engn, Chengdu 610031, Peoples R China
来源
PROCEEDINGS OF THE 2007 CHINESE CONTROL AND DECISION CONFERENCE | 2007年
关键词
singular system; terminal sliding mode control; uncertainties; finite time;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A terminal sliding mode control method is applied to a class of multiply input and multiply output ( MIMO) linear singular systems with matched uncertainties by a derivative state feedback controller. The special terminal sliding mode manifold is designed and the control law is accordingly obtained, by which the singualr system is ensured to be regular and implusive. The system states are guaranteed to reach the terminal sliding mode surface from any initial states and reach the system equilibrium point in finite time once they are on the terminal sliding surface. Finally, simulation results show the effectiveness of proposed method.
引用
收藏
页码:51 / +
页数:4
相关论文
共 9 条
  • [1] BAO S, 2003, CONTROL DECISION, V18, P31
  • [2] Non-singular terminal sliding mode control of rigid manipulators
    Feng, Y
    Yu, XH
    Man, ZH
    [J]. AUTOMATICA, 2002, 38 (12) : 2159 - 2167
  • [3] Hu Y., 1993, CONTROL THEORY APPL, V10, P567
  • [4] Terminal sliding mode control of MIMO linear systems
    Man, ZH
    Xing, HY
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (11): : 1065 - 1070
  • [5] [孙洁 Sun Jie], 2005, [山东大学学报. 理学版, Journal of Shangdong University. Natural Science], V40, P52
  • [6] Wen Xiangcai, 1995, Control Theory & Applications, V12, P114
  • [7] Stabilization of discrete-time singular systems: a matrix inequalities approach
    Xu, SY
    Yang, CW
    [J]. AUTOMATICA, 1999, 35 (09) : 1613 - 1617
  • [8] YU SH, 2002, P 39 IEEE C DEC CONT, P2198
  • [9] Multiple soliton solutions of the dispersive long-wave equations
    Zhang, JF
    [J]. CHINESE PHYSICS LETTERS, 1999, 16 (01): : 4 - 5