Identification of Malus halliana R2R3-MYB gene family under iron deficiency stress and functional characteristics of MhR2R3-MYB4 in Arabidopsis thaliana

被引:7
|
作者
Zhang, Z-X [1 ]
Zhang, R. [1 ]
Wang, S-C [1 ]
Zhang, D. [1 ]
Zhao, T. [1 ]
Liu, B. [1 ]
Wang, Y-X [1 ]
Wu, Y-X [1 ]
机构
[1] Gansu Agr Univ, Coll Hort, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
functional characteristics; iron deficiency; Malus halliana; MYB TRANSCRIPTION FACTOR; SALT STRESS; STAMEN DEVELOPMENT; TOLERANCE; EXPRESSION; RESPONSES; OVEREXPRESSION; APPLE; SUPERFAMILY; EFFICIENT;
D O I
10.1111/plb.13373
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Iron (Fe) is an essential element for plant growth and development. Fe deficiency can trigger leaf chlorosis and reduce fruit yield. Therefore, it is necessary to explore transcription factors in response to Fe deficiency stress. A total of 29 MhR2R3-MYB transcription factors were identified based on the transcriptome of Malus halliana under Fe deficiency stress. A comprehensive analysis of physical and chemical properties, gene structures, conserved motif composition, evolutionary relationship and chromosome distribution was performed. Subsequently, based on the transcriptome, 14 genes with the most significant expression under Fe deficiency stress were screened for qRT-PCR verification. Among them,the functional characteristics of MhR2R3-MYB4 (MD05G1089600) were further studied in Arabidopsis thaliana. Expression of 13 out of these 14 genes was upregulated, only one was downregulated. Maximum upregulation of MhR2R3-MYB4 under Fe deficiency was 36.39-fold and 58.21-fold compared with day 0 in leaves and roots, respectively. Overexpression of MhR2R3-MYB4 enhanced tolerance to Fe deficiency in A. thaliana and led to multiple biochemical changes: transgenic lines have higher chl a, chl b and Fe2+ content, higher enzyme activity (SOD, POD, CAT and FCR) and lower chlorosis than the wild type in Fe deficiency conditions. We suggest that MhR2R3-MYB4 plays an important part in Fe deficiency stress, which may contribute to improve Fe deficiency tolerance of apple in future.
引用
收藏
页码:344 / 355
页数:12
相关论文
共 50 条
  • [1] The R2R3-MYB gene family in Arabidopsis thaliana
    Stracke, R
    Werber, M
    Weisshaar, B
    CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (05) : 447 - 456
  • [2] Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana
    Kranz, HD
    Denekamp, M
    Greco, R
    Jin, H
    Leyva, A
    Meissner, RC
    Petroni, K
    Urzainqui, A
    Bevan, M
    Martin, C
    Smeekens, S
    Tonelli, C
    Paz-Ares, J
    Weisshaar, B
    PLANT JOURNAL, 1998, 16 (02): : 263 - 276
  • [3] The R2R3-MYB Transcription Factor Gene Family in Maize
    Du, Hai
    Feng, Bo-Run
    Yang, Si-Si
    Huang, Yu-Bi
    Tang, Yi-Xiong
    PLOS ONE, 2012, 7 (06):
  • [4] Genome-wide identification of R2R3-MYB family genes and gene response to stress in ginger
    Yao, Xiaoyan
    Meng, Fei
    Wu, Liping
    Guo, Xiaohu
    Sun, Zongping
    Jiang, Weimin
    Zhang, Jing
    Wu, Jing
    Wang, Shuting
    Wang, Zhaojian
    Su, Xinglong
    Dai, Xiuru
    Qu, Changqing
    Xing, Shihai
    PLANT GENOME, 2024, 17 (01):
  • [5] Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344
    Qiuhui Wei
    Rong Chen
    Xin Wei
    Yuheng Liu
    Shujuan Zhao
    Xiaopu Yin
    Tian Xie
    BMC Genomics, 21
  • [6] Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344
    Wei, Qiuhui
    Chen, Rong
    Wei, Xin
    Liu, Yuheng
    Zhao, Shujuan
    Yin, Xiaopu
    Xie, Tian
    BMC GENOMICS, 2020, 21 (01)
  • [7] Genome-Wide Identification and Analysis of the R2R3-MYB Gene Family in Theobroma cacao
    Du, Junhong
    Zhang, Qianqian
    Hou, Sijia
    Chen, Jing
    Meng, Jianqiao
    Wang, Cong
    Liang, Dan
    Wu, Rongling
    Guo, Yunqian
    GENES, 2022, 13 (09)
  • [8] Global dissection of R2R3-MYB in Pogostemon cablin uncovers a species-specific R2R3-MYB clade
    Zeng, Ying
    Li, Zhipeng
    Chen, Yiqiong
    Li, Wanying
    Wang, Hong-bin
    Shen, Yanting
    GENOMICS, 2023, 115 (04)
  • [9] Transcriptome Identification of R2R3-MYB Gene Family Members in Pinus massoniana and PmMYB4 Response to Drought Stress
    Lou, Xuan
    Yao, Sheng
    Chen, Peizhen
    Wang, Dengbao
    Agassin, Romaric Hippolyte
    Hou, Yanqing
    Zhang, Chi
    Ji, Kongshu
    FORESTS, 2023, 14 (02):
  • [10] Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation
    Hui Zhou
    Kui Lin-Wang
    Wang, Furong
    Espley, Richard V.
    Ren, Fei
    Zhao, Jianbo
    Ogutu, Collins
    He, Huaping
    Jiang, Quan
    Allan, Andrew C.
    Han, Yuepeng
    NEW PHYTOLOGIST, 2019, 221 (04) : 1919 - 1934