Landscape of lipidomic metabolites in gut-liver axis of Sprague-Dawley rats after oral exposure to titanium dioxide nanoparticles

被引:15
作者
Chen, Zhangjian [1 ,2 ]
Han, Shuo [1 ,2 ]
Zheng, Pai [1 ,2 ]
Zhang, Jiahe [1 ,2 ]
Zhou, Shupei [3 ]
Jia, Guang [1 ]
机构
[1] Peking Univ, Sch Publ Hlth, Dept Occupat & Environm Hlth Sci, Beijing 100191, Peoples R China
[2] Peking Univ, Beijing Key Lab Toxicol Res & Risk Assessment Foo, Sch Publ Hlth, Beijing 100191, Peoples R China
[3] Peking Univ, Dept Lab Anim Sci, Hlth Sci Ctr, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium dioxide nanoparticles; Nanotoxicity; Lipidomics; Lipid peroxidation; Gut-liver axis; OXIDATIVE STRESS; TIO2; NANOPARTICLES; DNA-DAMAGE; FOOD; TOXICITY; BIODISTRIBUTION; NANOMATERIALS; NANOTOXICITY; METABOLOMICS; INFLAMMATION;
D O I
10.1186/s12989-022-00484-9
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Background The application of titanium dioxide nanoparticles (TiO2 NPs) as food additives poses a risk of oral exposure that may lead to adverse health effects. Even though the substantial evidence supported liver as the target organ of TiO2 NPs via oral exposure, the mechanism of liver toxicity remains largely unknown. Since the liver is a key organ for lipid metabolism, this study focused on the landscape of lipidomic metabolites in gut-liver axis of Sprague Dawley (SD) rats exposed to TiO2 NPs at 0, 2, 10, 50 mg/kg body weight per day for 90 days. Results TiO2 NPs (50 mg/kg) caused slight hepatotoxicity and changed lipidomic signatures of main organs or systems in the gut-liver axis including liver, serum and gut. The cluster profile from the above biological samples all pointed to the same key metabolic pathway and metabolites, which was glycerophospholipid metabolism and Phosphatidylcholines (PCs), respectively. In addition, absolute quantitative lipidomics verified the changes of three PCs concentrations, including PC (16:0/20:1), PC (18:0/18:0) and PC (18:2/20:2) in the serum samples after treatment of TiO2 NPs (50 mg/kg). The contents of malondialdehyde (MDA) in serum and liver increased significantly, which were positively correlated with most differential lipophilic metabolites. Conclusions The gut was presumed to be the original site of oxidative stress and disorder of lipid metabolism, which resulted in hepatotoxicity through the gut-liver axis. Lipid peroxidation may be the initial step of lipid metabolism disorder induced by TiO2 NPs. Most nanomaterials (NMs) have oxidation induction and antibacterial properties, so the toxic pathway revealed in the present study may be primary and universal.
引用
收藏
页数:16
相关论文
共 69 条
[1]   Titanium Dioxide Nanoparticles Elicit Lower Direct Inhibitory Effect on Human Gut Microbiota Than Silver Nanoparticles [J].
Agans, Richard T. ;
Gordon, Alex ;
Hussain, Saber ;
Paliy, Oleg .
TOXICOLOGICAL SCIENCES, 2019, 172 (02) :411-416
[2]   Re-evaluation of titanium dioxide (E 171) as a food additive [J].
Aguilar, Fernando ;
Crebelli, Riccardo ;
Di Domenico, Alessandro ;
Dusemund, Birgit ;
Frutos, Maria Jose ;
Galtier, Pierre ;
Gott, David ;
Gundert-Remy, Ursula ;
Lambre, Claude ;
Leblanc, Jean-Charles ;
Lindtner, Oliver ;
Moldeus, Peter ;
Mortensen, Alicja ;
Mosesso, Pasquale ;
Parent-Massin, Dominique ;
Oskarsson, Agneta ;
Stankovic, Ivan ;
Waalkens-Berendsen, Ine ;
Woutersen, Rudolf Antonius ;
Wright, Matthew ;
Younes, Maged .
EFSA JOURNAL, 2016, 14 (09)
[3]   The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays [J].
Besinis, Alexandros ;
De Peralta, Tracy ;
Handy, Richard D. .
NANOTOXICOLOGY, 2014, 8 (01) :1-16
[4]   Bridging Bio-Nano Science and Cancer Nanomedicine [J].
Bjornmalm, Mattias ;
Thurecht, Kristofer J. ;
Michael, Michael ;
Scott, Andrew M. ;
Caruso, Frank .
ACS NANO, 2017, 11 (10) :9594-9613
[5]   Review of health safety aspects of nanotechnologies in food production [J].
Bouwmeester, Hans ;
Dekkers, Susan ;
Noordam, Maryvon Y. ;
Hagens, Werner I. ;
Bulder, Astrid S. ;
de Heer, Cees ;
ten Voorde, Sandra E. C. G. ;
Wijnhoven, Susan W. P. ;
Marvin, Hans J. P. ;
Sips, Adrienne J. A. M. .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2009, 53 (01) :52-62
[6]   Characterization and Preliminary Toxicity Assay of Nano-Titanium Dioxide Additive in Sugar-Coated Chewing Gum [J].
Chen, Xin-Xin ;
Cheng, Bin ;
Yang, Yi-Xin ;
Cao, Aoneng ;
Liu, Jia-Hui ;
Du, Li-Jing ;
Liu, Yuanfang ;
Zhao, Yuliang ;
Wang, Haifang .
SMALL, 2013, 9 (9-10) :1765-1774
[7]   Effect of oral exposure to titanium dioxide nanoparticles on lipid metabolism in Sprague-Dawley rats [J].
Chen, Zhangjian ;
Han, Shuo ;
Zheng, Pai ;
Zhou, Di ;
Zhou, Shupei ;
Jia, Guang .
NANOSCALE, 2020, 12 (10) :5973-5986
[8]   Hepatotoxicity and the role of the gut-liver axis in rats after oral administration of titanium dioxide nanoparticles [J].
Chen, Zhangjian ;
Zhou, Di ;
Han, Shuo ;
Zhou, Shupei ;
Jia, Guang .
PARTICLE AND FIBRE TOXICOLOGY, 2019, 16 (01)
[9]   Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo [J].
Chen, Zhangjian ;
Han, Shuo ;
Zhou, Di ;
Zhou, Shupei ;
Jia, Guang .
NANOSCALE, 2019, 11 (46) :22398-22412
[10]   Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague-Dawley rats [J].
Chen, Zhangjian ;
Zhou, Di ;
Zhou, Shupei ;
Jia, Guang .
JOURNAL OF APPLIED TOXICOLOGY, 2019, 39 (05) :807-819