Learning Koopman Eigenfunctions and Invariant Subspaces From Data: Symmetric Subspace Decomposition

被引:20
作者
Haseli, Masih [1 ]
Cortes, Jorge [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92093 USA
关键词
Eigenvalues and eigenfunctions; Dictionaries; Aerodynamics; Nonlinear dynamical systems; Data models; Noise measurement; Matrix decomposition; Nonlinear systems; system identification; Koopman operator; invariant spaces; learning; Dynamic Mode Decomposition; DYNAMIC-MODE DECOMPOSITION; SPECTRAL-ANALYSIS; OPERATOR; SYSTEMS; REDUCTION; APPROXIMATION;
D O I
10.1109/TAC.2021.3105318
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article develops data-driven methods to identify eigenfunctions of the Koopman operator associated with a dynamical system and subspaces that are invariant under the operator. We build on Extended Dynamic Mode Decomposition (EDMD), a data-driven method that finds a finite-dimensional approximation of the Koopman operator on the span of a predefined dictionary of functions. We propose a necessary and sufficient condition to identify Koopman eigenfunctions based on the application of EDMD forward and backward in time. Moreover, we propose the Symmetric Subspace Decomposition (SSD) algorithm, an iterative method that provably identifies the maximal Koopman-invariant subspace and the Koopman eigenfunctions in the span of the dictionary. We also introduce the Streaming SSD algorithm, an online extension of SSD that only requires a small fixed memory and incorporates new data as is received. Finally, we propose an extension of SSD that approximates Koopman eigenfunctions and invariant subspaces when the dictionary does not contain sufficient informative eigenfunctions.
引用
收藏
页码:3442 / 3457
页数:16
相关论文
共 52 条
[1]   NONLINEAR MODEL ORDER REDUCTION VIA DYNAMIC MODE DECOMPOSITION [J].
Alla, Alessandro ;
Kutz, J. Nathan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05) :B778-B796
[2]   A parallel and streaming Dynamic Mode Decomposition algorithm with finite precision error analysis for large data [J].
Anantharamu, Sreevatsa ;
Mahesh, Krishnan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 380 :355-377
[3]  
[Anonymous], 1960, The Quarterly Journal of Mathematics
[4]  
Arbabi H, 2018, IEEE DECIS CONTR P, P6409, DOI 10.1109/CDC.2018.8619720
[5]  
Bruder D, 2019, IEEE INT CONF ROBOT, P6244, DOI [10.1109/ICRA.2019.8793766, 10.1109/icra.2019.8793766]
[6]   Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control [J].
Brunton, Steven L. ;
Brunton, Bingni W. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PLOS ONE, 2016, 11 (02)
[7]   Applied Koopmanism [J].
Budisic, Marko ;
Mohr, Ryan ;
Mezic, Igor .
CHAOS, 2012, 22 (04)
[8]  
Castaño ML, 2020, IEEE ASME INT C ADV, P1679, DOI [10.1109/aim43001.2020.9159033, 10.1109/AIM43001.2020.9159033]
[9]   Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses [J].
Chen, Kevin K. ;
Tu, Jonathan H. ;
Rowley, Clarence W. .
JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (06) :887-915
[10]   Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition [J].
Dawson, Scott T. M. ;
Hemati, Maziar S. ;
Williams, Matthew O. ;
Rowley, Clarence W. .
EXPERIMENTS IN FLUIDS, 2016, 57 (03)