An efficient algorithm for computation of solitary wave solutions to nonlinear differential equations

被引:10
作者
Ayub, Kamran [1 ]
Khan, M. Yaqub [1 ]
Mahmood-Ul-Hassan, Qazi [2 ]
Ahmad, Jamshad [3 ]
机构
[1] Riphah Int Univ, Dept Math, Islamabad, Pakistan
[2] Univ Wah, Fac Basic Sci, Dept Math, Wah Cantt, Pakistan
[3] Univ Gujrat, Dept Math, Gujrat, Pakistan
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 89卷 / 03期
关键词
Exp(-phi(zeta))-expansion technique; Drinfeld-Sokolov equation; homogeneous principle; exact and travelling wave solutions; IMPROVED (G'/G)-EXPANSION METHOD; VARIATIONAL ITERATION METHOD; EVOLUTION-EQUATIONS;
D O I
10.1007/s12043-017-1447-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear mathematical problems and their solutions attain much attention in solitary waves. In soliton theory, an efficient tool to attain various types of soliton solutions is the exp(-phi(zeta))-expansion technique. This article is devoted to find exact travelling wave solutions of Drinfeld-Sokolov equation via a reliable mathematical technique. By using the proposed technique, we attain soliton wave solution of various types. It is observed that the technique under discussion is user friendly with minimum computational work, and can be extended for physical problems of different nature in mathematical physics.
引用
收藏
页数:6
相关论文
共 32 条
[21]   The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [J].
Wang, Mingliang ;
Li, Xiangzheng ;
Zhang, Jinliang .
PHYSICS LETTERS A, 2008, 372 (04) :417-423
[22]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[23]   A sine-cosine method for handling nonlinear wave equations [J].
Wazwaz, AM .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (5-6) :499-508
[24]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
WEISS, J ;
TABOR, M ;
CARNEVALE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :522-526
[25]   Traveling wave solutions for Generalized Drinfeld-Sokolov equations [J].
Wu, Liping ;
Chen, Senfa ;
Pang, Chunping .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (11) :4126-4130
[26]   A new integral transform operator for solving the heat-diffusion problem [J].
Yang, Xiao-Jun .
APPLIED MATHEMATICS LETTERS, 2017, 64 :193-197
[27]   A NEW INTEGRAL TRANSFORM METHOD FOR SOLVING STEADY HEAT-TRANSFER PROBLEM [J].
Yang, Xiao-Jun .
THERMAL SCIENCE, 2016, 20 :S639-S642
[28]   On exact traveling-wave solutions for local fractional Korteweg-de Vries equation [J].
Yang, Xiao-Jun ;
Tenreiro Machado, J. A. ;
Baleanu, Dumitru ;
Cattani, Carlo .
CHAOS, 2016, 26 (08)
[29]  
Zayed E. M. E., 2010, Journal of Applied Mathematics and Informatics, V28, P383
[30]   On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV of equations [J].
Zayed, EME ;
Zedan, HA ;
Gepreel, KA .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :285-303