Fujita type results for parabolic inequalities with gradient terms

被引:23
作者
Filippucci, Roberta [1 ]
Lombardi, Silvia [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Gran Sasso Sci Inst, Viale Francesco Crispi 7, I-67100 Laquila, Italy
关键词
Parabolic inequalities; Nonexistence of solutions; Global solutions; GLOBAL EXISTENCE; CAUCHY-PROBLEM; HEAT-EQUATION; NONUNIQUENESS; NONEXISTENCE; BLOWUP; DECAY;
D O I
10.1016/j.jde.2019.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give some Fujita type results for strongly p-coercive quasilinear parabolic differential inequalities with both a diffusion term and a dissipative term, whose prototype is given by u(t) - Delta(p)u >= a(x)u(q) - b(x)u(m) vertical bar del(u)vertical bar(s) in R-N x R+, u >= 0, u(x, 0) = u(0)(x)>= 0 in R-N, where p > 1, q > 0, 0 <= m < q, 0 < s <= p(q - m)/(q + 1) and a, b nonnegative weights which could be singular or degenerate. We prove the existence of Fujita type exponents qF , such that nonexistence of solutions for the inequality occurs when q < qF. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1873 / 1910
页数:38
相关论文
共 28 条
[1]   Regularity and nonuniqueness results for parabolic problems arising in some physical models, having natural growth in the gradient [J].
Abdellaoui, Boumediene ;
Dall'Aglio, Andrea ;
Peral, Ireneo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (03) :242-269
[2]   Global existence and decay for viscous Hamilton-Jacobi equations [J].
Amour, L ;
Ben-Artzi, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (5-6) :621-628
[3]  
Bartier JP, 2006, ASYMPTOTIC ANAL, V46, P325
[4]   The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces [J].
Ben-Artzi, M ;
Souplet, P ;
Weissler, FB .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (04) :343-378
[5]   On nonexistence and nonuniqueness of solutions of the Cauchy problem for a semilinear parabolic equation [J].
Ben-Artzi, M ;
Souplet, P ;
Weissler, FB .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05) :371-376
[6]   GLOBAL EXISTENCE AND DECAY FOR A NONLINEAR PARABOLIC EQUATION [J].
BENARTZI, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (08) :763-768
[7]  
Bidaut-Véron MF, 2006, ADV NONLINEAR STUD, V6, P69
[8]   GLOBAL-SOLUTIONS OF 2-DIMENSIONAL NAVIER-STOKES AND EULER EQUATIONS - REMARKS [J].
BREZIS, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :359-360
[9]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[10]  
Caristi G., 1997, Adv Differ Equ, V2, P319