A Milnor-Moore theorem for dendriform Hopf algebras

被引:25
作者
Ronco, M [1 ]
机构
[1] Univ Buenos Aires, Dept Ciclo Basico Comun 5, RA-1428 Buenos Aires, DF, Argentina
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 332卷 / 02期
关键词
D O I
10.1016/S0764-4442(00)01778-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A dendriform Hopf algebra is a Hopf algebra, such that the product * is the sum of two operations < and >, verifying certain conditions between them and with the coproduct Delta. The purpose of this Note is to announce a Milnor-Moore style theorem for these algebras. The role of Lie algebras is played by brace algebras, which are defined by n-ary operations (one for each n greater than or equal to 2) satisfying some relations. We show that a dendriform Hopf algebra is isomorphic to the envelopping algebra of its brace algebra of primitive elements. One of the ingredients of the proof is the construction of Eulerian idempotents in this context. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 8 条
[1]   COHOMOLOGY STRUCTURE OF AN ASSOCIATIVE RING [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1963, 78 (02) :267-&
[2]   A HODGE-TYPE DECOMPOSITION FOR COMMUTATIVE ALGEBRA COHOMOLOGY [J].
GERSTENHABER, M ;
SCHACK, SD .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 48 (03) :229-247
[3]  
Getzler Ezra, 1993, QUANTUM DEFORMATIONS, V7, P65
[4]  
Kadeishvili T. V., 1988, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, V91, P19
[5]   OPERATIONS ON THE CYCLIC HOMOLOGY OF COMMUTATIVE ALGEBRAS [J].
LODAY, JL .
INVENTIONES MATHEMATICAE, 1989, 96 (01) :205-230
[6]  
LODAY JL, 1999, PREPUBLICATION I REC, V14
[7]   ON STRUCTURE OF HOPF ALGEBRAS [J].
MILNOR, JW ;
MOORE, JC .
ANNALS OF MATHEMATICS, 1965, 81 (02) :211-&
[8]  
RONCO M, IN PRESS CONT MATH