High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes

被引:165
作者
Zhou, Lite [1 ,2 ]
Zhao, Chenqi [1 ,2 ]
Giri, Binod [1 ]
Allen, Patrick [1 ]
Xu, Xiaowei [1 ,2 ]
Joshi, Hrushikesh [1 ]
Fan, Yangyang [1 ,2 ]
Titova, Lyubov V. [3 ]
Rao, Pratap M. [1 ,2 ]
机构
[1] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA
[2] Worcester Polytech Inst, Mat Sci & Engn Program, Worcester, MA 01609 USA
[3] Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
BiVO4; Sb:SnO2; photoelectrochemical; photoanode; core/shell nanorod; PHOTOELECTROCHEMICAL WATER OXIDATION; BISMUTH VANADATE PHOTOANODES; BIVO4; THIN-FILM; SOLAR PHOTOELECTROLYSIS; HYDROGEN-PRODUCTION; TANDEM; OXIDE; COMPOSITE; EVOLUTION; CATALYST;
D O I
10.1021/acs.nanolett.5b05200
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
BiVO4 has become the top-performing semiconductor among photoanodes for photoelectrochemical water Oxidation. However, BiVO4 photoanodes are still limited to a fraction of the theoretically possible photocurreut at low applied voltages because of modest. charge transport properties and a trade-off between light absorption and charge separation efficiencies. Here, we investigate photoanodes composed of thin layers of BiVO4 coated onto Sb-doped SnO2, (Sb:SnO2) nanorodarrays (Sb:SnO2/BiVO4 NRAs) and demotistrate a high. value for the product of light absorption and charge separation efficiencies (eta(abs) x eta(sep)) of similar to 51% at an applied voltage of 0.6 V versus the reversible hydrogen electrode, as determined by integration of the quantum efficiency over the standard-AM 1.5G spectrum. To the best of our knowledge, this is one of the highest eta(abs) x eta(sep) efficiencies achieved to date at this voltage for nanowire-core/BiVO4-shell photoanodes. Moreover, although WO3 has recently been extensively studied as a tore nanowire material for core/shell BiVO4 photoanodes, the Sb:SnO2/BiVO4 NRAs generate larger photocurrents, especially at low applied voltages. In addition, we present control experiments on planar Sb:SnO2/BiVO4 and WO3/BiVO4 heterojunctions, which indicate that Sb:SnO2 is more favorable as a core material. These results indicate that integration Of Sb:SnO2 nanorod cores with other successful strategies such as doping and coating with oxygen evolution catalysts can move the performance of BiVO4 and related semiconductors closer to their theoretical potential.
引用
收藏
页码:3463 / 3474
页数:12
相关论文
共 71 条
[51]   Photoanode characteristics of multi-layer composite BiVO4 thin film in a concentrated carbonate electrolyte solution for water splitting [J].
Saito, Rie ;
Miseki, Yugo ;
Sayama, Kazuhiro .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2013, 258 :51-60
[52]   Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte [J].
Saito, Rie ;
Miseki, Yugo ;
Sayama, Kazuhiro .
CHEMICAL COMMUNICATIONS, 2012, 48 (32) :3833-3835
[53]   Efficient solar photoelectrolysis by nanoporous Mo: BiVO4 through controlled electron transport [J].
Seabold, Jason A. ;
Zhu, Kai ;
Neale, Nathan R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (03) :1121-1131
[54]   Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device [J].
Shi, Xinjian ;
Zhang, Kan ;
Shin, Kahee ;
Ma, Ming ;
Kwon, Jeong ;
Choi, In Taek ;
Kim, Jung Kyu ;
Kim, Hwan Kyu ;
Wang, Dong Hwan ;
Park, Jong Hyeok .
NANO ENERGY, 2015, 13 :182-191
[55]   Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures [J].
Shi, Xinjian ;
Choi, Yong ;
Zhang, Kan ;
Kwon, Jeong ;
Kim, Dong Yeong ;
Lee, Ja Kyung ;
Oh, Sang Ho ;
Kim, Jong Kyu ;
Park, Jong Hyeok .
NATURE COMMUNICATIONS, 2014, 5
[56]   Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy [J].
Strait, Jared H. ;
George, Paul A. ;
Levendorf, Mark ;
Blood-Forsythe, Martin ;
Rana, Farhan ;
Park, Jiwoong .
NANO LETTERS, 2009, 9 (08) :2967-2972
[57]   Nanostructured WO3/BiVO4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting [J].
Su, Jinzhan ;
Guo, Liejin ;
Bao, Ningzhong ;
Grimes, Craig A. .
NANO LETTERS, 2011, 11 (05) :1928-1933
[58]   Antimony-Doped Tin Oxide Nanorods as a Transparent Conducting Electrode for Enhancing Photoelectrochemical Oxidation of Water by Hematite [J].
Sun, Yiqing ;
Chemelewski, William D. ;
Berglund, Sean P. ;
Li, Chun ;
He, Huichao ;
Shi, Gaoquan ;
Mullins, C. Buddie .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (08) :5494-5499
[59]   Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode [J].
Tamirat, Andebet Gedamu ;
Su, Wei-Nien ;
Dubale, Amare Aregahegn ;
Chen, Hung-Ming ;
Hwang, Bing-Joe .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (11) :5949-5961
[60]   SB-DOPED SNO2 TRANSPARENT CONDUCTING OXIDE FROM THE SOL-GEL DIP-COATING TECHNIQUE [J].
TERRIER, C ;
CHATELON, JP ;
BERJOAN, R ;
ROGER, JA .
THIN SOLID FILMS, 1995, 263 (01) :37-41