Positive solutions for Dirichlet problems involving the mean curvature operator in Minkowski space

被引:5
作者
Ma, Ruyun [1 ,2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
[2] Northwest Normal Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2018年 / 187卷 / 02期
关键词
Quasilinear differential equation; Positive radial solution; Existence; Leray-Schauder fixed point theorem; Mean curvature operator; Minkowski space; BOUNDARY-VALUE-PROBLEMS; RADIAL SOLUTIONS; HYPERSURFACES; EQUATION; BALL;
D O I
10.1007/s00605-017-1133-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of classical positive radial solutions to the boundary value problems where b > 0, B(b) = {x. RN : | x| < b}, a : [0, b]. R is a continuous function which may change sign, f : [0,8). R is a continuous function with f (s) > 0 in [0, b], and. > 0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 12 条
[1]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[2]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[3]   Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (04) :644-659
[4]  
Bidaut-Veron M.F., 1997, Differ. Integral Equ., V10, P1003
[5]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[6]  
Coelho I, 2014, TOPOL METHOD NONL AN, V44, P23
[7]   Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space [J].
Corsato, Chiara ;
Obersnel, Franco ;
Omari, Pierpaolo ;
Rivetti, Sabrina .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) :227-239
[8]   Positive solutions to a class of elliptic boundary value problems [J].
Hai, DD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :195-199
[9]   Positive solutions of quasilinear boundary value problems [J].
Hai, DD ;
Schmitt, K ;
Shivaji, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 217 (02) :672-686
[10]   Global structure of radial positive solutions for a prescribed mean curvature problem in a ball [J].
Ma, Ruyun ;
Gao, Hongliang ;
Lu, Yanqiong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) :2430-2455