Genetic code on the diadic plane

被引:39
作者
Khrennikov, A. Yu.
Kozyrev, S. V. [1 ]
机构
[1] VA Steklov Math Inst, Moscow 119991, Russia
[2] Vaxjo Univ, Int Ctr Math Modeling Phys & Cognit Sci, S-35195 Vaxjo, Sweden
基金
俄罗斯基础研究基金会;
关键词
p-adic metric; genetic code;
D O I
10.1016/j.physa.2007.03.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the simple parametrization for the space of codons (triples of nucleotides) by 8 x 8 table. This table (which we call the diadic plane) possesses the natural 2-adic ultrametric. We show that after this parametrization the genetic code will be a locally constant map of the simple form. The local constancy of this map will describe degeneracy of the genetic code. The map of the genetic code defines 2-adic ultrametric on the space of amino acids. We show that hydrophobic amino acids will be clustered in two balls with respect to this ultrametric. Therefore the introduced parametrization of space of codons exhibits the hidden regularity of the genetic code. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 19 条
[1]   Application of p-adic analysis to models of breaking of replica symmetry [J].
Avetisov, VA ;
Bikulov, AH ;
Kozyrev, SV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (50) :8785-8791
[2]  
Cristianini N., 2006, INTRO COMPUTATIONAL
[3]  
DRAGOVICH B, P ACID MODEL DNA SEQ
[4]  
FINKELSHTEIN AV, 2002, PHYS PROTEINS, P33113
[5]   A crystal base for the genetic code [J].
Frappat, L ;
Sorba, P ;
Sciarrino, A .
PHYSICS LETTERS A, 1998, 250 (1-3) :214-221
[6]   Crystalizing the genetic code [J].
Frappat, L ;
Sciarrino, A ;
Sorba, P .
JOURNAL OF BIOLOGICAL PHYSICS, 2001, 27 (01) :1-34
[7]   The hypercube structure of the genetic code explains conservative and non-conservative aminoacid substitutions in vivo and in vitro [J].
JimenezMontano, MA ;
delaMoraBasanez, CR ;
Poschel, T .
BIOSYSTEMS, 1996, 39 (02) :117-125
[8]  
Khrennikov A., 2004, Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena
[9]  
Fundamental Theories of Physics
[10]  
Khrennikov A. Y., 1997, NONARCHIMEDEAN ANAL