Large-Scale Multi-View Subspace Clustering in Linear Time

被引:0
作者
Kang, Zhao [1 ]
Zhou, Wangtao [1 ]
Zhao, Zhitong [1 ]
Shao, Junming [1 ]
Han, Meng [2 ]
Xu, Zenglin [1 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Management & Econ, Chengdu, Peoples R China
[3] Peng Cheng Lab, Ctr Artificial Intelligence, Shenzhen 518055, Peoples R China
来源
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2020年 / 34卷
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A plethora of multi-view subspace clustering (MVSC) methods have been proposed over the past few years. Researchers manage to boost clustering accuracy from different points of view. However, many state-of-the-art MVSC algorithms, typically have a quadratic or even cubic complexity, are inefficient and inherently difficult to apply at large scales. In the era of big data, the computational issue becomes critical. To fill this gap, we propose a large-scale MVSC (LMVSC) algorithm with linear order complexity. Inspired by the idea of anchor graph, we first learn a smaller graph for each view. Then, a novel approach is designed to integrate those graphs so that we can implement spectral clustering on a smaller graph. Interestingly, it turns out that our model also applies to single-view scenario. Extensive experiments on various large-scale benchmark data sets validate the effectiveness and efficiency of our approach with respect to state-of-the-art clustering methods.
引用
收藏
页码:4412 / 4419
页数:8
相关论文
共 39 条
  • [1] [Anonymous], 2019, ARXIV190102291
  • [2] [Anonymous], 2017, IJCAI
  • [3] [Anonymous], 2014, AAAI
  • [4] [Anonymous], 2014, 28 AAAI C ART INT
  • [5] Multi-view low-rank sparse subspace clustering
    Brbic, Maria
    Kopriva, Ivica
    [J]. PATTERN RECOGNITION, 2018, 73 : 247 - 258
  • [6] Diversity-induced Multi-view Subspace Clustering
    Cao, Xiaochun
    Zhang, Changqing
    Fu, Huazhu
    Liu, Si
    Zhang, Hua
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 586 - 594
  • [7] Chen X., 2011, AAAI, P313
  • [8] Sparse Subspace Clustering: Algorithm, Theory, and Applications
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2765 - 2781
  • [9] Accelerated low-rank representation for subspace clustering and semi-supervised classification on large-scale data
    Fan, Jicong
    Tian, Zhaoyang
    Zhao, Mingbo
    Chow, Tommy W. S.
    [J]. NEURAL NETWORKS, 2018, 100 : 39 - 48
  • [10] Multi-View Subspace Clustering
    Gao, Hongchang
    Nie, Feiping
    Li, Xuelong
    Huang, Heng
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4238 - 4246