Rapid screening method for the detection of SARS-CoV-2 variants of concern

被引:22
作者
Ong, David S. Y. [1 ,2 ]
Koeleman, Johannes G. M. [1 ]
Vaessen, Norbert [1 ]
Breijer, Simone [1 ]
Paltansing, Sunita [1 ]
de Man, Peter [1 ]
机构
[1] Franciscus Gasthuis & Vlietland, Dept Med Microbiol & Infect Control, Rotterdam, Netherlands
[2] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Dept Epidemiol, Utrecht, Netherlands
关键词
SARS-CoV-2; COVID-19; Melting curve; PCR; Variants; screening;
D O I
10.1016/j.jcv.2021.104903
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Comprehensive and up-to-date monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) is crucial as these are characterized by their increased transmissibility, immune evasion and virulence. Objectives: To describe the wide-scale implementation of a reverse transcriptase polymerase chain reaction (RTPCR) multiple variants assay with melting curve analysis as a routine procedure. Study design: We prospectively performed multiple variants RT-PCR on consecutive SARS-CoV-2 RT-PCR positive samples from patients, healthcare workers and nursing home residents from our hospital catchment area. This technique was implemented in our automated Roche FLOW system with a turn-around time of 6 h. Results: Between February 1 and May 2, 2021, 989 samples were tested by the variant RT-PCR. Our method was validated by comparison of variant RT-PCR to whole genome sequencing testing. We observed an increase over time in the proportion of UK variant that became the dominant variant, and the concurrent emergence of the South-African and Brazilian variants. Prompt public health responses for infection control were possible because of this rapid screening method, resulting in early detection and reduction of unnoticed spread of VOC as early as possible. Conclusion: A variant RT-PCR with additional melting curve analyses is a feasible, rapid and efficient screening strategy that can be implemented in routine microbiological laboratories.
引用
收藏
页数:3
相关论文
共 13 条
[1]   Comparison of Pyrosequencing, Sanger Sequencing, and Melting Curve Analysis for Detection of Low-Frequency Macrolide-Resistant Mycoplasma pneumoniae Quasispecies in Respiratory Specimens [J].
Chan, Kwok-Hung ;
To, Kelvin K. W. ;
Chan, Betsy W. K. ;
Li, Clara P. Y. ;
Chiu, Susan S. ;
Yuen, Kwok-Yung ;
Ho, Pak-Leung .
JOURNAL OF CLINICAL MICROBIOLOGY, 2013, 51 (08) :2592-2598
[2]   LightSNiP assay is a good strategy for pharmacogenetics test [J].
Cheli, Stefania ;
Pietrantonio, Filippo ;
Clementi, Emilio ;
Falvella, Felicia S. .
FRONTIERS IN PHARMACOLOGY, 2015, 6
[3]   Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR (Publication with Expression of Concern) [J].
Corman, Victor M. ;
Landt, Olfert ;
Kaiser, Marco ;
Molenkamp, Richard ;
Meijer, Adam ;
Chu, Daniel K. W. ;
Bleicker, Tobias ;
Bruenink, Sebastian ;
Schneider, Julia ;
Schmidt, Marie Luisa ;
Mulders, Daphne G. J. C. ;
Haagmans, Bart L. ;
van der Veer, Bas ;
van den Brink, Sharon ;
Wijsman, Lisa ;
Goderski, Gabriel ;
Romette, Jean-Louis ;
Ellis, Joanna ;
Zambon, Maria ;
Peiris, Malik ;
Goossens, Herman ;
Reusken, Chantal ;
Koopmans, Marion P. G. ;
Drosten, Christian .
EUROSURVEILLANCE, 2020, 25 (03) :23-30
[4]  
de Oliveira MHS, 2021, SUDDEN RISE COVID 19, DOI DOI 10.1101/2021.03.24.21254046
[5]   Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021 [J].
Funk, Tjede ;
Pharris, Anastasia ;
Spiteri, Gianfranco ;
Bundle, Nick ;
Melidou, Angeliki ;
Carr, Michael ;
Gonzalez, Gabriel ;
Garcia-Leon, Alejandro ;
Crispie, Fiona ;
O'Connor, Lois ;
Murphy, Niamh ;
Mossong, Joel ;
Vergison, Anne ;
Wienecke-Baldacchino, Anke K. ;
Abdelrahman, Tamir ;
Riccardo, Flavia ;
Stefanelli, Paola ;
Di Martino, Angela ;
Bella, Antonino ;
Lo Presti, Alessandra ;
Casaca, Pedro ;
Moreno, Joana ;
Borges, Vitor ;
Isidro, Joana ;
Ferreira, Rita ;
Gomes, Joao Paulo ;
Dotsenko, Liidia ;
Suija, Heleene ;
Epstein, Jevgenia ;
Sadikova, Olga ;
Sepp, Hanna ;
Ikonen, Niina ;
Savolainen-Kopra, Carita ;
Blomqvist, Soile ;
Mottonen, Teemu ;
Helve, Otto ;
Gomes-Dias, Joana ;
Adlhoch, Cornelia .
EUROSURVEILLANCE, 2021, 26 (16)
[6]   Nextstrain: real-time tracking of pathogen evolution [J].
Hadfield, James ;
Megill, Colin ;
Bell, Sidney M. ;
Huddleston, John ;
Potter, Barney ;
Callender, Charlton ;
Sagulenko, Pavel ;
Bedford, Trevor ;
Neher, Richard A. .
BIOINFORMATICS, 2018, 34 (23) :4121-4123
[7]   LightCycler Technology in Molecular Diagnostics [J].
Lyon, Elaine ;
Wittwer, Carl T. .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2009, 11 (02) :93-101
[8]   Comparison of the GeneFinder™ COVID-19 Plus RealAmp Kit on the sample-to-result Platform ELITe InGenius to the national reference method: An added value of N gene target detection? [J].
Ong, David S. Y. ;
Claas, Eric C. J. ;
Breijer, Simone ;
Vaessen, Norbert .
JOURNAL OF CLINICAL VIROLOGY, 2020, 132
[9]   An action plan for pan-European defence against new SARS-CoV-2 variants [J].
Priesemann, Viola ;
Balling, Rudi ;
Brinkmann, Melanie M. ;
Ciesek, Sandra ;
Czypionka, Thomas ;
Eckerle, Isabella ;
Giordano, Giulia ;
Hanson, Claudia ;
Hel, Zdenek ;
Hotulainen, Pirta ;
Klimek, Peter ;
Nassehi, Armin ;
Peichl, Andreas ;
Perc, Matjaz ;
Petelos, Elena ;
Prainsack, Barbara ;
Szczurek, Ewa .
LANCET, 2021, 397 (10273) :469-470
[10]   A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology [J].
Rambaut, Andrew ;
Holmes, Edward C. ;
O'Toole, Aine ;
Hill, Verity ;
McCrone, John T. ;
Ruis, Christopher ;
du Plessis, Louis ;
Pybus, Oliver G. .
NATURE MICROBIOLOGY, 2020, 5 (11) :1403-1407