Deep Model-Based Semi-Supervised Learning Way for Outlier Detection in Wireless Capsule Endoscopy Images

被引:9
|
作者
Gao, Yan [1 ]
Lu, Weining [2 ]
Si, Xiaobei [1 ]
Lan, Yu [1 ]
机构
[1] Beijing Jishuitan Hosp, Dept Gastroenterol, Beijing 100035, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
关键词
Convolutional neural network; long short term memory network; outlier detection; semi-supervised; wireless capsule endoscopy; FAULT-DETECTION;
D O I
10.1109/ACCESS.2020.2991115
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wireless capsule endoscopy (WCE) has become an irreplaceable tool for diagnosing small intestinal diseases, and detecting the outliers in WCE images automatically remains as a hot research topic. Considering the difficulties in obtaining sufficient labeled WCE data, it is necessary to develop the diagnosis model which works well with only little labeled or even unlabeled training samples. In this paper, a novel semi-supervised deep-structured framework is introduced to solve the problem of outlier detection in WCE images. The key idea of our model is to mine the anomalous graphical patterns existed in the image by analyzing the spatial-scale trends of sequential image regions. Three main contributions are concluded: 1) we integrate a convolutional neural network into long short term memory network, so that the intrinsic differences between outliers and normal instances could be captured. Besides, 2) a assessment model is built by using various signs of anomaly occurrence and fake outliers knowledge learned during the training stage, which enhances the outlier alarm accuracy significantly. Furthermore, 3) a nest-structured training method is proposed, which helps our model achieving efficient training process. Experimental results on the real WCE images demonstrate the effectiveness of our model.
引用
收藏
页码:81621 / 81632
页数:12
相关论文
共 50 条
  • [21] An active semi-supervised deep learning model for human activity recognition
    Haixia Bi
    Miquel Perello-Nieto
    Raul Santos-Rodriguez
    Peter Flach
    Ian Craddock
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 13049 - 13065
  • [22] Network Intrusion Detection Based on Active Semi-supervised Learning
    Zhang, Yong
    Niu, Jie
    He, Guojian
    Zhu, Lin
    Guo, Da
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN-W 2021), 2021, : 129 - 135
  • [23] An active semi-supervised deep learning model for human activity recognition
    Bi, Haixia
    Perello-Nieto, Miquel
    Santos-Rodriguez, Raul
    Flach, Peter
    Craddock, Ian
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (10) : 13049 - 13065
  • [24] A critical study on the recent deep learning based semi-supervised video anomaly detection methods
    Baradaran, Mohammad
    Bergevin, Robert
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27761 - 27807
  • [25] A critical study on the recent deep learning based semi-supervised video anomaly detection methods
    Mohammad Baradaran
    Robert Bergevin
    Multimedia Tools and Applications, 2024, 83 : 27761 - 27807
  • [26] Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning
    Li, Linhui
    Zhang, Wenjun
    Zhang, Xiaoyan
    Emam, Mahmoud
    Jing, Weipeng
    ELECTRONICS, 2023, 12 (02)
  • [27] Detection of abnormalities in wireless capsule endoscopy based on extreme learning machine
    Ellahyani, Ayoub
    El Jaafari, Ilyas
    Charfi, Said
    El Ansari, Mohamed
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (05) : 877 - 884
  • [28] Detection of abnormalities in wireless capsule endoscopy based on extreme learning machine
    Ayoub Ellahyani
    Ilyas El Jaafari
    Said Charfi
    Mohamed El Ansari
    Signal, Image and Video Processing, 2021, 15 : 877 - 884
  • [29] Automated bleeding detection in wireless capsule endoscopy images based on sparse coding
    Abhinav Patel
    Kumi Rani
    Sunil Kumar
    Isabel N. Figueiredo
    Pedro N. Figueiredo
    Multimedia Tools and Applications, 2021, 80 : 30353 - 30366
  • [30] Automated bleeding detection in wireless capsule endoscopy images based on sparse coding
    Patel, Abhinav
    Rani, Kumi
    Kumar, Sunil
    Figueiredo, Isabel N.
    Figueiredo, Pedro N.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30353 - 30366