Asymptotics and stability for global solutions to the Navier-Stokes equations

被引:82
作者
Gallagher, I [1 ]
Iftimie, D
Planchon, F
机构
[1] Ecole Polytech, Ctr Math, UMR 7640, F-91128 Palaiseau, France
[2] Univ Rennes 1, IRMAR, UMR 6625, F-35042 Rennes, France
[3] Univ Paris 13, Lab Anal Geometrie & Applicat, UMR 7539, Inst Galilee, F-93430 Villetaneuse, France
关键词
Navier-Stokes equations; large time asymptotics; stability;
D O I
10.5802/aif.1983
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution.
引用
收藏
页码:1387 / +
页数:39
相关论文
共 22 条
[1]  
AUSCHER P, IN PRESS J MATH PURE
[2]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
Cannone M, 2000, REV MAT IBEROAM, V16, P1
[5]   GLOBAL EXISTENCE FOR THE INCOMPRESSIBLE NAVIER-STOKES SYSTEM [J].
CHEMIN, JY .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (01) :20-28
[6]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[7]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[8]  
Furioli G, 2000, REV MAT IBEROAM, V16, P605
[9]   Non-blowup at large times and stability for global solutions to the Navier-Stokes equations [J].
Gallagher, I ;
Iftimie, D ;
Planchon, F .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (04) :289-292
[10]  
GALLAGHER I, 2001, IN PRESS ARCH RAT ME