The well posedness of the dissipative Korteweg-de Vries equations with low regularity data

被引:3
作者
Han, Jinsheng [1 ]
Peng, Lizhong [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing, Peoples R China
关键词
dissipative Korteweg de Vries equation; Bourgain type space; well posedness;
D O I
10.1016/j.na.2007.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We Study the Cauchy problem of a dissipative version of the KdV equation With rough initial data. By working in a Bourgain type space we prove the local and global well posedness results for Sobolev spaces of negative order, and the order number is lower than the well known value -3/4. In some sense this paper is intended to show how the Bourgain type space is applicable to the study of semilinear equations with a linear part which contain both dissipative mid dispersive terms. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 188
页数:18
相关论文
共 7 条
[1]  
Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
[2]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[3]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[4]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603
[5]  
Molinet L, 2002, INT MATH RES NOTICES, V2002, P1979
[6]   The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order [J].
Molinet, L ;
Ribaud, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (04) :1745-1776
[7]  
Pecher H, 2005, DIFFER INTEGRAL EQU, V18, P1147