Dynamic neural networks based adaptive optimal impedance control for redundant manipulators under physical constraints
被引:9
|
作者:
Xu, Zhihao
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R China
Pazhou Lab, Guangzhou, Peoples R ChinaGuangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R China
Xu, Zhihao
[1
,3
]
Li, Xiaoxiao
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R ChinaGuangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R China
Li, Xiaoxiao
[1
]
Li, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Swansea Univ, Sch Engn, Swansea, W Glam, WalesGuangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R China
Li, Shuai
[2
]
Wu, Hongmin
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R China
Pazhou Lab, Guangzhou, Peoples R ChinaGuangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R China
Wu, Hongmin
[1
,3
]
Zhou, Xuefeng
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R ChinaGuangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R China
Zhou, Xuefeng
[1
]
机构:
[1] Guangdong Acad Sci, Inst Intelligent Mfg, Guangdong Key Lab Modern Control Technol, Guangzhou, Peoples R China
[2] Swansea Univ, Sch Engn, Swansea, W Glam, Wales
This paper presents a dynamic neural network based adaptive impedance control method for redundant robots under multiple physical constraints. In order to provide optimal contact performance without an accurate environment model, an adaptive impedance learning method is proposed to establish the opti-mal interaction between robot and environment. In the inner loop, a theoretical framework of constraint optimization is constructed, and then a dynamic neural network is established to compensate the non-linear dynamics, and compliance to physical limitations is also satisfied. These limitations include joint angle restriction, angular velocity restriction, angular acceleration restriction, and torque restriction. Theoretical analysis proves the stability of the closed loop system. Numerical results show the effective-ness of the proposed control scheme. (c) 2021 Elsevier B.V. All rights reserved.
机构:
Zhejiang Gongshang Univ, Sch Informat & Elect Engn, Hangzhou 310018, Peoples R ChinaZhejiang Gongshang Univ, Sch Informat & Elect Engn, Hangzhou 310018, Peoples R China
Gu, Longhao
Huang, Qingjiu
论文数: 0引用数: 0
h-index: 0
机构:
Kogakuin Univ, Grad Sch Engn, Control Syst Lab, Tokyo 1638677, JapanZhejiang Gongshang Univ, Sch Informat & Elect Engn, Hangzhou 310018, Peoples R China
机构:
South China Univ Technol, Coll Automat Sci & Engn, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Coll Automat Sci & Engn, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Peoples R China
Huang, Haohui
Yang, Chenguang
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Coll Automat Sci & Engn, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Coll Automat Sci & Engn, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Peoples R China
Yang, Chenguang
Chen, C. L. Philip
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510641, Peoples R China
Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Peoples R China
Univ Macau, Fac Sci & Technol, Macau, Peoples R ChinaSouth China Univ Technol, Coll Automat Sci & Engn, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Peoples R China
机构:
Changchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R ChinaChangchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R China
Li, Yuanchun
Jin, Weinign
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R ChinaChangchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R China
Jin, Weinign
Ma, Bing
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R ChinaChangchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R China
Ma, Bing
Dong, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R ChinaChangchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R China