Well-posedness for the hyperviscous magneto-micropolar equations

被引:10
|
作者
Liu, Hui [1 ]
Sun, Chengfeng [2 ]
Xin, Jie [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Magneto-micropolar equations; Well-posedness; Strong solution;
D O I
10.1016/j.aml.2020.106403
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The multi-dimensional hyperviscous magneto-micropolar equation is studied in this paper. The existence and uniqueness of strong solutions for the hyperviscous magneto-micropolar equation are proved. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Global Well-Posedness of Compressible Magneto-micropolar Fluid Equations
    Jia, Cuiman
    Tan, Zhong
    Zhou, Jianfeng
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (11)
  • [2] Global Well-Posedness of Compressible Magneto-micropolar Fluid Equations
    Cuiman Jia
    Zhong Tan
    Jianfeng Zhou
    The Journal of Geometric Analysis, 2023, 33
  • [3] Local Well-Posedness to the Magneto-Micropolar Boundary Layer Equations in Gevrey Space
    Tan, Zhong
    Zhang, Mingxue
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5790 - 5802
  • [4] Global well-posedness for n-dimensional magneto-micropolar equations with hyperdissipation
    Deng, Lihua
    Shang, Haifeng
    APPLIED MATHEMATICS LETTERS, 2021, 111
  • [5] Global well-posedness of the 3D magneto-micropolar equations with damping
    Liu, Hui
    Sun, Chengfeng
    Meng, Fanwei
    APPLIED MATHEMATICS LETTERS, 2019, 94 (38-43) : 38 - 43
  • [6] Global well-posedness of two-dimensional magneto-micropolar equations with partial dissipation
    Guo, Yana
    Shang, Haifeng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 313 : 392 - 407
  • [7] Local well-posedness for the incompressible full magneto-micropolar system with vacuum
    Jishan Fan
    Zhaoyun Zhang
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [8] GLOBAL WELL-POSEDNESS TO THE NONHOMOGENEOUS MAGNETO-MICROPOLAR FLUID EQUATIONS WITH LARGE INITIAL DATA AND VACUUM
    Zhong, Xin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 872 - 892
  • [9] Local well-posedness for the incompressible full magneto-micropolar system with vacuum
    Fan, Jishan
    Zhang, Zhaoyun
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [10] Global well-posedness for magneto-micropolar system in 21/2 dimensions
    Liu, Yujun
    Li, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 280 : 72 - 85