On the saddle order of polynomial differential systems at a resonant singular point

被引:2
作者
Doug, Guangfeng [1 ]
Yang, Jiazhong [2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Focus order; Saddle order; Polynomial differential systems; Integrability; p : -q Resonance; VECTOR-FIELDS; CENTERS;
D O I
10.1016/j.jmaa.2014.10.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the complexity of integrability of planar polynomial differential systems whose eigenvalues admit resonances at a saddle singular point. We prove that for arbitrary integer n >= 2, if one of n + 2 and 2n + 1 is a prime number, then there exists a polynomial differential system of degree n with 1 : -2 resonance at its saddle singular point such that the saddle order can be as high as n(2) - 1. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1557 / 1569
页数:13
相关论文
共 22 条
[1]  
BAUTIN NN, 1954, MATH USSR SB, V100, P397
[2]  
BIBIKOV Y. N., 1979, Lecture Notes in Mathematics, V702
[3]  
Bruno AD., 1971, Trans. Moscow Math. Soc, V25, P131
[4]  
Christopher C., 2004, Qual. Theory Dyn. Syst., V5, P11
[5]  
Doug C., 2013, THESIS PEKING U
[6]  
Fercec B., 2011, J APPL ANAL COMPUT, V1, P9
[7]  
Fronville A, 1998, FUND MATH, V157, P191
[8]  
Han M., 1998, Ann. Differential Equations, V14, P150
[9]   1:-3 resonant centers on C2 with homogeneous cubic nonlinearities [J].
Hu, Zhaoping ;
Romanovski, Valery G. ;
Shafer, Douglas S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (08) :1927-1940
[10]   A quartic system and a quintic system with fine focus of order 18 [J].
Huang, Jing ;
Wang, Fang ;
Wang, Lu ;
Yang, Jiazhong .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (03) :205-217