Parsimonious Tensor Response Regression

被引:142
作者
Li, Lexin [1 ]
Zhang, Xin [2 ]
机构
[1] Univ Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA
[2] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Envelope method; Multidimensional array; Multivariate linear regression; Reduced rank regression; Sparsity principle; Tensor regression; MULTIVARIATE LINEAR-REGRESSION; SIMULTANEOUS DIMENSION REDUCTION; LONGITUDINAL NEUROIMAGING DATA; LEAST-SQUARES REGRESSION; REDUCED-RANK REGRESSION; VARIABLE SELECTION; MODELS; PREDICTORS; ENVELOPES; ALGORITHM;
D O I
10.1080/01621459.2016.1193022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Aiming at abundant scientific and engineering data with not only high dimensionality but also complex structure, we study the regression problem with a multidimensional array (tensor) response and a vector predictor. Applications include, among others, comparing tensor images across groups after adjusting for additional covariates, which is of central interest in neuroimaging analysis. We propose parsimonious tensor response regression adopting a generalized sparsity principle. It models all voxels of the tensor response jointly, while accounting for the inherent structural information among the voxels. It effectively reduces the number of free parameters, leading to feasible computation and improved interpretation. We achieve model estimation through a nascent technique called the envelope method, which identifies the immaterial information and focuses the estimation based upon the material information in the tensor response. We demonstrate that the resulting estimator is asymptotically efficient, and it enjoys a competitive finite sample performance. We also illustrate the new method on two real neuroimaging studies. Supplementary materials for this article are available online.
引用
收藏
页码:1131 / 1146
页数:16
相关论文
共 45 条
[1]   Superior temporal gyrus, language function, and autism [J].
Bigler, Erin D. ;
Mortensen, Sherstin ;
Neeley, E. Shannon ;
Ozonoff, Sally ;
Krasny, Lori ;
Johnson, Michael ;
Lu, Jeffrey ;
Provencal, Sherri L. ;
McMahon, William ;
Lainhart, Janet E. .
DEVELOPMENTAL NEUROPSYCHOLOGY, 2007, 31 (02) :217-238
[2]   Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study [J].
Cao, Qingjiu ;
Zang, Yufeng ;
Sun, Li ;
Sui, Manqiu ;
Long, Xiangyu ;
Zou, Qihong ;
Wang, Yufeng .
NEUROREPORT, 2006, 17 (10) :1033-1036
[3]   Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection [J].
Chen, Lisha ;
Huang, Jianhua Z. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) :1533-1545
[4]   Sparse partial least squares regression for simultaneous dimension reduction and variable selection [J].
Chun, Hyonho ;
Keles, Suenduez .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :3-25
[5]   Envelopes and partial least squares regression [J].
Cook, R. D. ;
Helland, I. S. ;
Su, Z. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (05) :851-877
[6]   Algorithms for Envelope Estimation [J].
Cook, R. Dennis ;
Zhang, Xin .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (01) :284-300
[7]   Foundations for Envelope Models and Methods [J].
Cook, R. Dennis ;
Zhang, Xin .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) :599-611
[8]   Envelopes and reduced-rank regression [J].
Cook, R. Dennis ;
Forzani, Liliana ;
Zhang, Xin .
BIOMETRIKA, 2015, 102 (02) :439-456
[9]   Simultaneous Envelopes for Multivariate Linear Regression [J].
Cook, R. Dennis ;
Zhang, Xin .
TECHNOMETRICS, 2015, 57 (01) :11-25
[10]  
Cook RD, 2010, STAT SINICA, V20, P927