Investigation of magnetic properties of MnSi/Co and MnBi/Fe65CO35 nanocomposite permanent magnets by micro-magnetic simulation

被引:20
作者
Li, Y. Q. [1 ]
Yue, M. [1 ]
Wang, T. [1 ]
Wu, Q. [1 ]
Zhang, D. T. [1 ]
Gao, Y. [2 ]
机构
[1] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
[2] Samsung Adv Inst Technol, Beijing 100028, Peoples R China
基金
中国国家自然科学基金;
关键词
Micro-magnetic finite element method; Magnetic properties; MnBi/Co nanocomposite magnets; MnBi/Fe65Co35 nanocomposite magnets; MICROMAGNETIC ANALYSIS; COERCIVITY; MNBI;
D O I
10.1016/j.jmmm.2015.06.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Demagnetization curves of anisotropic nanocomposite MnBi/Co and MnBi/Fe65Co35 permanent magnets were investigated by micro-magnetic Finite element method. Effects of volume ratio, deviation degree of orientation and intrinsic magnetic properties of the soft magnetic phase on the magnetic properties of the magnets were investigated. From the viewpoint of practical applications, to meet the requirement or hardness parameters, kappa=K/(mu M-0(s)2)(1/2) > 1, the calculation maximum (BH)max of MnBi/Co and MnBi/Fe65Co35 magnets are about 199 kJ/m(3) (V(Co)=22 vol%) and 196 kJ/m(3) (V(FeCo)=14 vol%), respectively, indicating their good potential in application. Compared with single phase MnBi magnet, the (BH), of nanocomposite MnBi/Co and MnBi/Fe65Co35 magnets increases by 66% and 63%, respectively. The remanence and coercivity of MnBi/Co nanocomposite magnets reduce as appearing a deviation degree of orientation, result of greatly decrease of the magnetic energy product. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:484 / 489
页数:6
相关论文
共 19 条
[1]  
CHEN T, 1974, IEEE T MAGN, VMA10, P581
[2]   Permanent magnets: Plugging the gap [J].
Coey, J. M. D. .
SCRIPTA MATERIALIA, 2012, 67 (06) :524-529
[3]   Importance of ideal grain boundaries of high remanent composite permanent magnets [J].
Fischer, R ;
Kronmuller, H .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (06) :3271-3275
[4]   Computer simulation of single-phase nanocrystalline permanent magnets [J].
Griffiths, MK ;
Bishop, JEL ;
Tucker, JW ;
Davies, HA .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 183 (1-2) :49-67
[5]  
He SL, 2006, J RARE EARTH, V24, P197, DOI 10.1016/S1002-0721(06)60093-8
[6]  
Jin HM, 1998, J PHYS-CONDENS MAT, V10, P7243, DOI 10.1088/0953-8984/10/32/015
[7]   THE EXCHANGE-SPRING MAGNET - A NEW MATERIAL PRINCIPLE FOR PERMANENT-MAGNETS [J].
KNELLER, EF ;
HAWIG, R .
IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (04) :3588-3600
[8]   Magnetization processes in small particles and nanocrystalline materials [J].
Kronmüller, H ;
Fischer, R ;
Bachmann, M ;
Leineweber, T .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 203 :12-17
[9]   Bulk isotropic and anisotropic nanocomposite rare-earth magnets [J].
Lee, D ;
Hilton, JS ;
Chen, CH ;
Huang, MQ ;
Zhang, Y ;
Hadjipanayis, GC ;
Liu, S .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) :2904-2906
[10]   Hot-pressed and hot-deformed nanocomposite (Nd,Pr,DY)2Fe14B/α-Fe-based magnets [J].
Lee, D ;
Hilton, JS ;
Liu, S ;
Zhang, Y ;
Hadjipanayis, GC ;
Chen, CH .
IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (05) :2947-2949