Modified astigmatic beam technique for laser writing

被引:10
作者
Lapointe, Jerome [1 ]
Berube, Jean-Philippe [2 ]
Dupont, Albert [1 ]
Bellec, Matthieu [1 ,3 ,4 ]
Vallee, Real [1 ]
机构
[1] Univ Laval, Ctr Opt Photon & Laser, Pavil Opt & Photon, 2340 Rue Terrasse, Quebec City, PQ G1Y 2W5, Canada
[2] Ciena Corp, 505 Blvd Parc Technol,Suite 100, Quebec City, PQ G1P 4S9, Canada
[3] Univ Bordeaux, CNRS, CEA, CELIA,UMR 5107, F-33405 Talence, France
[4] Univ Cote dAzur, CNRS, INPHYNI, Nice, France
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”; 加拿大创新基金会;
关键词
WAVE-GUIDES; FEMTOSECOND;
D O I
10.1364/AO.454380
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The ultrafast laser writing of optical waveguides and devices is increasingly ubiquitous among the photonics community, mostly for its flexibility and three-dimensional fabrication capability. The well-known astigmatic beam technique is the simplest method to inscribe near-circular cross-section waveguides. In this paper, we report on a significant enhancement to the widely used astigmatic beam technique that makes it more flexible and yields a more circular waveguide cross section. By simply superposing a long-focus lens before the laser inscription objective lens, we demonstrate that the normalized squared radial deviation from a perfectly circular waveguide cross section can be reduced to <4 x 10(-4), which is a significant improvement compared to >0.1 typically obtained using the standard astigmatic beam technique, or >0.7 with a Gaussian beam. The modified technique also makes it easy to use the full power delivered by the laser, which is not usually the case with the standard technique. A technique to optimize the waveguide shape prior to the inscription by in situ laser-induced plasma emission imaging is also discussed. (C) 2022 Optica Publishing Group
引用
收藏
页码:2333 / 2337
页数:5
相关论文
共 21 条
[1]   Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses [J].
Ams, M ;
Marshall, GD ;
Spence, DJ ;
Withford, MJ .
OPTICS EXPRESS, 2005, 13 (15) :5676-5681
[2]  
Crespi A, 2013, NAT PHOTONICS, V7, P545, DOI [10.1038/NPHOTON.2013.112, 10.1038/nphoton.2013.112]
[3]   In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics [J].
Ferrer, Andres ;
Ruiz de la Cruz, Alexandro ;
Puerto, Daniel ;
Gawelda, Wojciech ;
Valles, Juan A. ;
Rebolledo, Miguel A. ;
Berdejo, Victor ;
Siegel, Jan ;
Solis, Javier .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (08) :1688-1692
[4]   On an approximate minimax circle closest to a set of points [J].
Gass, SI ;
Witzgall, C .
COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (04) :637-643
[5]   Femtosecond laser micromachining in transparent materials [J].
Gattass, Rafael R. ;
Mazur, Eric .
NATURE PHOTONICS, 2008, 2 (04) :219-225
[6]   Chemical-assisted femtosecond laser writing of lab-in-fibers [J].
Haque, Moez ;
Lee, Kenneth K. C. ;
Ho, Stephen ;
Fernandes, Luis A. ;
Herman, Peter R. .
LAB ON A CHIP, 2014, 14 (19) :3817-3829
[7]   High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations [J].
Hnatovsky, C ;
Taylor, RS ;
Simova, E ;
Bhardwaj, VR ;
Rayner, DM ;
Corkum, PB .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (01)
[8]   Aberration correction for direct laser written waveguides in a transverse geometry [J].
Huang, L. ;
Salter, P. S. ;
Payne, F. ;
Booth, M. J. .
OPTICS EXPRESS, 2016, 24 (10) :10565-10574
[9]   Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing [J].
Kammel, Robert ;
Ackermann, Roland ;
Thomas, Jens ;
Goette, Joerg ;
Skupin, Stefan ;
Tuennermann, Andreas ;
Nolte, Stefan .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e169-e169
[10]  
Lapointe J., 2015, Planar Waveguides and other Confined Geometries, P129