Comparison of Plasma Heating at First and Second Electron Cyclotron Harmonics in the T-10 Tokamak

被引:5
作者
Dnestrovskij, Yu. N. [1 ]
Danilov, A. V. [1 ]
Dnestrovskij, A. Yu. [1 ]
Klyuchnikov, L. A. [1 ]
Lysenko, S. E. [1 ]
Melnikov, A. V. [1 ,2 ]
Nemets, A. R. [1 ]
Nurgaliev, M. R. [1 ]
Subbotin, G. F. [1 ]
Soloviev, N. A. [1 ]
Sushkov, A. V. [1 ]
Sychugov, D. Yu. [3 ]
Cherkasov, S. V. [1 ]
机构
[1] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[3] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
tokamak; electron cyclotron heating; numeric simulation;
D O I
10.1134/S1063780X20050037
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the T-10 tokamak, the results of plasma heating at the first and second electron cyclotron (EC) harmonics differ substantially. However, the problem is multi-parametric, so it is impossible to estimate the heating quality by sight. In this work, the analysis of heating at both harmonics is provided with two transport models, which were constructed separately for simulation in each mode. For the heating on the second harmonic, we solve the inverse problem of determining the profile of the absorbed power from the experimental electron temperature profile. In this mode, we are able to determine both the deposited power profile and the ratio of absorbed to deposited power. It is shown that at low plasma densities, this ratio is small, which, apparently, is a consequence of the low absorption of the heating waves during their single pass though the plasma. During the heating at the second harmonic, the absorbed power profile is much flatter than predicted by ray tracing calculations of EC waves. Multi-pass wave absorption with random reflections from the corrugated chamber wall leads to such absorption profiles. At high plasma densities, the absorbed power is close to the input power. However, in this case, the results at the second harmonic are worse than the results obtained at the first harmonic due to the flatter absorbed density profile.
引用
收藏
页码:477 / 489
页数:13
相关论文
共 11 条
[1]   POWER DEPOSITION PROFILE EFFECT ON THE ECH EFFICIENCY IN T-10 [J].
ALIKAEV, V ;
BAGDASAROV, A ;
BEREZOVSKII, E ;
BERLIZOV, A ;
BORSHCHAGOVSKII, A ;
VASIN, N ;
VERSHKOV, V ;
GORELOV, Y ;
GRASHIN, S ;
DREMIN, M ;
ESIPCHUK, Y ;
EFREMOV, S ;
ZAVERYAEV, V ;
ILIN, V ;
KISLOV, A ;
KARZHAVIN, Y ;
MARKELOV, V ;
MAXIMOV, Y ;
MEDVEDEV, A ;
NOTKIN, G ;
NABATOV, A ;
PIMENOV, A ;
POPOVICHEV, S ;
POPOV, I ;
POZNYAK, V ;
RAZUMOVA, K ;
ROY, I ;
RODICHKIN, I ;
STEPANENKO, M ;
STRELKOV, V ;
SOKOLOV, Y ;
SITAR, E ;
SOLNTSEV, A ;
TARAKANOV, A ;
TARASAN, K ;
TITISHOV, K ;
TRUKHIN, V ;
PHLYAGIN, V ;
CHANKIN, A ;
CHISTYAKOV, V ;
CHICHEROV, V ;
SHISHKIN, B ;
YARAMYSHEV, G .
PLASMA PHYSICS AND CONTROLLED FUSION, 1987, 29 (10A) :1285-1295
[2]  
Alikaev V. V., 1988, PLASMA PHYS REP, V14, P601
[3]  
[Anonymous], SELF ORG HOT PLASMAS
[4]  
DNESTROVSKII YN, 1963, SOV PHYS-TECH PHYS, V8, P691
[5]   Analysis of pressure profiles and transport simulations of MAST discharges [J].
Dnestrovskij, Yu N. ;
Connor, J. W. ;
Cherkasov, S. V. ;
Danilov, A. V. ;
Dnestrovskij, A. Yu ;
Lysenko, S. E. ;
Roach, C. M. ;
Walsh, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (09) :1477-1496
[6]   Modified Canonical Profile Transport Model for Description of On-Axis Electron-Cyclotron Heating of Tokamak Plasma [J].
Dnestrovskij, Yu. N. ;
Vershkov, V. A. ;
Danilov, A. V. ;
Dnestrovskij, A. Yu. ;
Lysenko, S. E. ;
Melnikov, A. V. ;
Subbotin, G. F. ;
Sychugov, D. Yu. ;
Cherkasov, S. V. ;
Shelukhin, D. A. .
PLASMA PHYSICS REPORTS, 2019, 45 (03) :207-219
[7]  
GOLANT VE, 1986, METHODS HIGH FREQUEN
[8]   ECRH effect on the electric potential and turbulence in the TJ-II stellarator and T-10 tokamak plasmas [J].
Melnikov, A., V ;
Krupnik, L., I ;
Ascasibar, E. ;
Cappa, A. ;
Chmyga, A. A. ;
Deshko, G. N. ;
Drabinskij, M. A. ;
Eliseev, L. G. ;
Hidalgo, C. ;
Khabanov, P. O. ;
Khrebtov, S. M. ;
Kharchev, N. K. ;
Komarov, A. D. ;
Kozachek, A. S. ;
Lysenko, S. E. ;
Molinero, A. ;
de Pablos, J. L. ;
Ufimtsev, M., V ;
Zenin, V. N. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (08)
[9]   DIII-D research towards establishing the scientific basis for future fusion reactors [J].
Petty, C. C. ;
Abadie, L. ;
Abrams, T. W. ;
Ahn, J. ;
Akiyama, T. ;
Aleynikov, P. ;
Allcock, J. ;
Allen, E. O. ;
Allen, S. ;
Anderson, J. P. ;
Austin, M. E. ;
Bak, J. ;
Barada, K. K. ;
Barbour, N. ;
Bardoczi, L. ;
Barr, J. ;
Barton, J. L. ;
Bass, E. M. ;
Baylor, L. R. ;
Beckers, J. ;
Belli, E. A. ;
Ashourvan, A. ;
Battaglia, D. ;
Berkery, J. W. ;
Bartelli, N. ;
Bialek, J. M. ;
Boedo, J. A. ;
Boivin, R. L. ;
Bonoli, P. T. ;
Bortolon, A. ;
Boyer, M. D. ;
Brambila, R. E. ;
Bray, B. ;
Briesemeister, A. R. ;
Brennan, D. P. ;
Bringuier, S. A. ;
Brookmate, M. W. ;
Brower, D. L. ;
Brown, B. R. ;
Brown, W. D. ;
Buchenauer, D. ;
Burke, M. G. ;
Burrell, K. H. ;
Butt, J. ;
Buttery, R. J. ;
Bykov, I ;
Candy, J. M. ;
Canik, J. M. ;
Cao, N. M. ;
Gomez, L. Carbajal .
NUCLEAR FUSION, 2019, 59 (11)
[10]  
Prater R., 2000, Paper EX8/1