Liouville theorems of subelliptic harmonic maps

被引:1
|
作者
Gao, Liu [1 ]
Lu, Lingen [2 ]
Yang, Guilin [3 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321017, Zhejiang, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Subelliptic harmonic map; Liouville theorem; Vanishing-type theorem; Sub-Riemannian manifold; Totally geodesic Riemannian foliation; HARNACK INEQUALITY; UNIQUENESS; OPERATORS;
D O I
10.1007/s10455-021-09811-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss two Liouville-type theorems for subelliptic harmonic maps from sub-Riemannian manifolds to Riemannian manifolds. One is the Dirichlet version which states that two subelliptic harmonic maps from a sub-Riemannian manifold with boundary to a regular ball must be same if their restrictions on boundary are same; it is generalized to complete noncompact domains as well. The other is the vanishing-type theorem for finite L p-energy subelliptic harmonic maps on complete noncompact totally geodesic Riemannian foliations which are special sub-Riemannian manifolds.
引用
收藏
页码:293 / 307
页数:15
相关论文
共 50 条
  • [31] SUBELLIPTIC HARMONIC MORPHISMS
    Dragomir, Sorin
    Lanconelli, Ermanno
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (02) : 411 - 440
  • [32] Liouville-type theorems for biharmonic maps between Riemannian manifolds
    Baird, Paul
    Fardoun, Ali
    Ouakkas, Seddik
    ADVANCES IN CALCULUS OF VARIATIONS, 2010, 3 (01) : 49 - 68
  • [33] LIOUVILLE THEOREM FOR HARMONIC MAPS FROM RIEMANNIAN MANIFOLD WITH COMPACT BOUNDARY
    Sun, Jun
    Zhu, Xiaobao
    KODAI MATHEMATICAL JOURNAL, 2023, 46 (02) : 207 - 218
  • [34] Liouville theorems for ancient solutions to the V-harmonic map heat flows
    Chen, Qun
    Qiu, Hongbing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 233
  • [35] Liouville-type results for fully nonlinear subelliptic equations on the Heisenberg group
    Shi, Wei
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (06) : 898 - 912
  • [36] SEMI-CONFORMAL L-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM
    Remli, Embarka
    Cherif, Ahmed Mohammed
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 121 - 130
  • [37] LP-Liouville theorems on complete smooth metric measure spaces
    Wu, Jia-Yong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (04): : 510 - 539
  • [38] On Liouville Theorems of a Hartree-Poisson system
    Li, Ling
    Lei, Yutian
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (04) : 1154 - 1178
  • [39] Some Liouville theorems for quasilinear elliptic inequalities
    G. Caristi
    E. Mitidieri
    S. I. Pohozaev
    Doklady Mathematics, 2009, 79 : 118 - 124
  • [40] GRADIENT ESTIMATES AND LIOUVILLE THEOREMS FOR LICHNEROWICZ EQUATIONS
    Huang, Pingliang
    Wang, Youde
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 317 (02) : 363 - 386