Liouville theorems of subelliptic harmonic maps

被引:1
|
作者
Gao, Liu [1 ]
Lu, Lingen [2 ]
Yang, Guilin [3 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321017, Zhejiang, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Subelliptic harmonic map; Liouville theorem; Vanishing-type theorem; Sub-Riemannian manifold; Totally geodesic Riemannian foliation; HARNACK INEQUALITY; UNIQUENESS; OPERATORS;
D O I
10.1007/s10455-021-09811-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss two Liouville-type theorems for subelliptic harmonic maps from sub-Riemannian manifolds to Riemannian manifolds. One is the Dirichlet version which states that two subelliptic harmonic maps from a sub-Riemannian manifold with boundary to a regular ball must be same if their restrictions on boundary are same; it is generalized to complete noncompact domains as well. The other is the vanishing-type theorem for finite L p-energy subelliptic harmonic maps on complete noncompact totally geodesic Riemannian foliations which are special sub-Riemannian manifolds.
引用
收藏
页码:293 / 307
页数:15
相关论文
共 50 条
  • [21] Liouville Theorems for Generalized Harmonic Functions
    Alexander I. Kheyfits
    Potential Analysis, 2002, 16 : 93 - 101
  • [22] Liouville theorems for quasi-harmonic functions
    Zhu Xiangrong
    Wang Meng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 2890 - 2896
  • [23] Subelliptic harmonic maps, morphisms, and vector fields143
    Dragomir, Sorin
    NOTE DI MATEMATICA, 2008, 28 : 131 - 146
  • [24] Heat Flows of Subelliptic Harmonic Maps into Riemannian Manifolds with Nonpositive Curvatures
    Zhou, Zhen-Rong
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 471 - 489
  • [25] Heat Flows of Subelliptic Harmonic Maps into Riemannian Manifolds with Nonpositive Curvatures
    Zhen-Rong Zhou
    Journal of Geometric Analysis, 2013, 23 : 471 - 489
  • [26] A Schwarz lemma and a Liouville theorem for generalized harmonic maps
    Chen, Qun
    Li, Kaipeng
    Qiu, Hongbing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [27] Liouville Theorems for Holomorphic Maps on Pseudo-Hermitian Manifolds
    Haojie Chen
    Yibin Ren
    The Journal of Geometric Analysis, 2022, 32
  • [28] Liouville Theorems for Holomorphic Maps on Pseudo-Hermitian Manifolds
    Chen, Haojie
    Ren, Yibin
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [29] Liouville theorems for weakly F-stationary maps with potential
    Han, Yingbo
    Feng, Shuxiang
    Zhang, Wei
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (04): : 435 - 450
  • [30] LIOUVILLE TYPE THEOREMS FOR POLY-HARMONIC NAVIER PROBLEMS
    Cao, Linfen
    Chen, Wenxiong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 3937 - 3955