Liouville theorems of subelliptic harmonic maps

被引:1
|
作者
Gao, Liu [1 ]
Lu, Lingen [2 ]
Yang, Guilin [3 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321017, Zhejiang, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Subelliptic harmonic map; Liouville theorem; Vanishing-type theorem; Sub-Riemannian manifold; Totally geodesic Riemannian foliation; HARNACK INEQUALITY; UNIQUENESS; OPERATORS;
D O I
10.1007/s10455-021-09811-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss two Liouville-type theorems for subelliptic harmonic maps from sub-Riemannian manifolds to Riemannian manifolds. One is the Dirichlet version which states that two subelliptic harmonic maps from a sub-Riemannian manifold with boundary to a regular ball must be same if their restrictions on boundary are same; it is generalized to complete noncompact domains as well. The other is the vanishing-type theorem for finite L p-energy subelliptic harmonic maps on complete noncompact totally geodesic Riemannian foliations which are special sub-Riemannian manifolds.
引用
收藏
页码:293 / 307
页数:15
相关论文
共 50 条
  • [11] Gradient estimates and Liouville theorems for Dirac-harmonic maps
    Chen, Qun
    Jost, Juergen
    Sun, Linlin
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 : 66 - 78
  • [12] LIOUVILLE THEOREMS FOR f-HARMONIC MAPS INTO HADAMARD SPACES
    Hua, Bobo
    Liu, Shiping
    Xia, Chao
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 290 (02) : 381 - 402
  • [13] Existence and Liouville theorems for V -harmonic maps from complete manifolds
    Qun Chen
    Jürgen Jost
    Hongbing Qiu
    Annals of Global Analysis and Geometry, 2012, 42 : 565 - 584
  • [14] Exponentially subelliptic harmonic maps from the Heisenberg group into a sphere
    Chiang, Yuan-Jen
    Dragomir, Sorin
    Esposito, Francesco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [15] Parabolicity, the divergence theorem for δ-subharmonic functions and applications to the Liouville theorems for harmonic maps
    Atsuji, A
    TOHOKU MATHEMATICAL JOURNAL, 2005, 57 (03) : 353 - 373
  • [16] Existence and Liouville theorems for V-harmonic maps from complete manifolds
    Chen, Qun
    Jost, Juergen
    Qiu, Hongbing
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 42 (04) : 565 - 584
  • [17] The gradient estimate of subelliptic harmonic maps with a potential
    Luo, Han
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (4) : 1189 - 1199
  • [18] Liouville-Type Theorems forCC-F-Harmonic Maps into a Carnot Group
    He, Guoqing
    Li, Jing
    Zhao, Peibiao
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 4024 - 4050
  • [19] Liouville-Type Theorems for CC-F-Harmonic Maps into a Carnot Group
    Guoqing He
    Jing Li
    Peibiao Zhao
    The Journal of Geometric Analysis, 2021, 31 : 4024 - 4050
  • [20] Liouville theorems for generalized harmonic functions
    Kheyfits, AI
    POTENTIAL ANALYSIS, 2002, 16 (01) : 93 - 101