Design of a High-Power V-Band Klystron With Internal Coupling Multigap Cavity

被引:3
作者
Xie, Bingchuan [1 ,2 ]
Zhang, Rui [3 ]
Wang, Yong [1 ,2 ]
Wang, Huanhuan [4 ]
Zhang, Xu [1 ,2 ]
Chao, Quangui [1 ,2 ]
Liu, Kegang [1 ,2 ]
Geng, Zhihui [3 ]
Liao, Yunfeng [3 ]
Yang, Xiudong [3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Sci & Technol High Power Microwave Source, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Sch Optoelect, Beijing 100049, Peoples R China
关键词
Couplings; Klystrons; Resonators; Radio frequency; Integrated circuit modeling; Bandwidth; Apertures; Beam optics; extended interaction klystron (EIK); genetic algorithms (GAs); internal coupling cavity; V-band; STABILITY; CIRCUIT;
D O I
10.1109/TED.2022.3159260
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, the design study of a V-band klystron with an internal coupling cavity is presented. The effective characteristic impedance of the internal coupling cavity is approximately 25% higher than that of the external coupling cavity when both operate at pi mode. A V-band RF circuit of 35% efficiency has been designed based on the proposed internal coupling cavity. An RF circuit based on single-gap resonators was designed first with the help of genetic algorithms (GAs). Then, a five-gap internal coupling cavity replaced the last several resonators to improve circuit bandwidth and efficiency. Simulation results have shown that the proposed internal coupling cavity can significantly improve the efficiency and bandwidth of an RF circuit based on single-gap resonators. Driven by a 60-kV and 9-A pencil beam, the designed RF circuit can achieve a peak power of 188.5 kW, a gain of 47.8 dB, and a 1-dB bandwidth of 180 MHz. The matching high compression ratio beam optics is also elaborated in this article.
引用
收藏
页码:2644 / 2649
页数:6
相关论文
共 28 条
[21]   Intense Sheet Electron Beam Transport in a Uniform Solenoidal Magnetic Field [J].
Nguyen, Khanh T. ;
Pasour, John A. ;
Antonsen, Thomas M., Jr. ;
Larsen, Paul B. ;
Petillo, John J. ;
Levush, Baruch .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (05) :744-752
[22]   Demonstration of a Multikilowatt, Solenoidally Focused Sheet Beam Amplifier at 94 GHz [J].
Pasour, John ;
Wright, Edward ;
Nguyen, Khanh T. ;
Balkcum, Adam ;
Wood, Franklin N. ;
Myers, Robert E. ;
Levush, Baruch .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) :1630-1636
[23]   Planar Microstrip Slow-Wave Structure for Low-Voltage V-Band Traveling-Wave Tube With a Sheet Electron Beam [J].
Ryskin, Nikita M. ;
Rozhnev, Andrey G. ;
Starodubov, Andrey V. ;
Serdobintsev, Alexey A. ;
Pavlov, Anton M. ;
Benedik, Andrey I. ;
Torgashov, Roman A. ;
Torgashov, Gennadiy V. ;
Sinitsyn, Nikolay I. .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (05) :757-760
[24]   Particle-In-Cell Simulation Analysis of a Multicavity W-Band Sheet Beam Klystron [J].
Shin, Young-Min ;
Wang, Jian-Xun ;
Barnett, Larry R. ;
Luhmann, Neville C., Jr. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (01) :251-258
[25]   Subterahertz Photonic Crystal Klystron Amplifier [J].
Stephens, J. C. ;
Rosenzweig, G. ;
Shapiro, M. A. ;
Temkin, R. J. ;
Tucek, J. C. ;
Kreischer, K. E. .
PHYSICAL REVIEW LETTERS, 2019, 123 (24)
[26]  
Yaogen D., 2010, DESIGN MANUFACURE AP
[27]  
Yu D.U.L., 1992, AIP CONF P, V279, P85, DOI DOI 10.1063/1.44049
[28]   Demonstration of a High-Power Ka-Band Extended Interaction Klystron [J].
Zhao, Ding ;
Gu, Wei ;
Hou, Xiaowan ;
Liu, Gaofeng ;
Xue, Qianzhong ;
Zhang, Zhiqiang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (09) :3788-3794