The neutralization of He+ scattered off aluminum is calculated via a self-consistent LDA where the metal surface is modeled by an LDA jellium surface, and its structure factor is consistently calculated. This approach includes Auger and plasmon-assisted neutralization channels of He+ to the He ground state in front of aluminum. We analyze these neutralization channels, which leads us to a revision of the usual calculations of ion neutralization on surfaces depending on the transferred energy lying below, near, or above the metal plasma frequency. The results of this calculation are compared with those of other methods, namely usual unscreened calculations, calculations which extrapolate bulk results, calculations performed for a step potential surface, and surface calculations in the long-distance limit.