Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome

被引:192
作者
Keene, JD [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Microbiol, Durham, NC 27710 USA
关键词
D O I
10.1073/pnas.111145598
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Following transcription and splicing, each mRNA of a mammalian cell passes into the cytoplasm where its fate is in the hands of a complex network of ribonucleoproteins (mRNPs). The success or failure of a gene to be expressed depends on the performance of this mRNP infrastructure. The entry, gating, processing, and transit of each mRNA through an mRNP network helps determine the composition of a cell's proteome. The machinery that regulates storage, turnover, and translational activation of mRNAs is not well understood, in part, because of the heterogeneous nature of mRNPs. Recently, subsets of cellular mRNAs clustered as members of mRNP complexes have been identified by using antibodies reactive with RNA-binding proteins, including ELAV/Hu, eIF-4E, and poly(A)-binding proteins. Cytoplasmic ELAV/Hu proteins are involved in the stability and translation of early response gene (ERG) transcripts and are expressed predominately in neurons. mRNAs recovered from ELAV/Hu mRNP complexes were found to have similar sequence elements, suggesting a common structural linkage among them. This approach opens the possibility of identifying transcripts physically clustered in vivo that may have similar fates or functions. Moreover, the proteins encoded by physically organized mRNAs may participate in the same biological process or structural outcome, not unlike operons and their polycistronic mRNAs do in prokaryotic organisms. Our goal is to understand the organization and flow of genetic information on an integrative systems level by analyzing the collective properties of proteins and mRNAs associated with mRNPs in vivo.
引用
收藏
页码:7018 / 7024
页数:7
相关论文
共 55 条
[1]  
Albright TD, 2000, CELL, V100, pS1
[2]  
[Anonymous], RNA PROTEIN INTERACT
[3]   ELAV tumor antigen, Hel-N1, increases translation of neurofilament M mRNA and induces formation of neurites in human teratocarcinoma cells [J].
Antic, D ;
Lu, N ;
Keene, JD .
GENES & DEVELOPMENT, 1999, 13 (04) :449-461
[4]   Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression [J].
Antic, D ;
Keene, JD .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (02) :273-278
[5]  
Antic D, 1998, J CELL SCI, V111, P183
[6]   Embryonic lethal abnormal vision-like RNA-binding proteins regulate neurite outgrowth and tau expression in PC12 cells [J].
Aranda-Abreu, GE ;
Behar, L ;
Chung, SM ;
Furneaux, H ;
Ginzburg, I .
JOURNAL OF NEUROSCIENCE, 1999, 19 (16) :6907-6917
[7]  
Atasoy U, 1998, J CELL SCI, V111, P3145
[8]   The travels of mRNAs through all cells large and small [J].
Bassell, GJ ;
Oleynikov, Y ;
Singer, RH .
FASEB JOURNAL, 1999, 13 (03) :447-454
[9]  
BRENNAN CM, 2000, IN PRESS CELL MOL LI
[10]   Exploring the new world of the genome with DNA microarrays [J].
Brown, PO ;
Botstein, D .
NATURE GENETICS, 1999, 21 (Suppl 1) :33-37