Adaptive Fisher method detects dense and sparse signals in association analysis of SNV sets

被引:2
作者
Cai, Xiaoyu [1 ]
Chang, Lo-Bin [1 ]
Potter, Jordan [2 ]
Song, Chi [3 ]
机构
[1] Ohio State Univ, Dept Stat, 1948 Neil Ave, Columbus, OH 43210 USA
[2] Kenyon Coll, Dept Math & Stat, 201 N Coll Rd, Gambier, OH 43022 USA
[3] Ohio State Univ, Coll Publ Hlth, Div Biostat, 1841 Neil Ave,208E Cunz Hall, Columbus, OH 43210 USA
基金
美国国家卫生研究院;
关键词
Genome-wide association study; Adaptive fisher; Rare variants; Common variants; Dense signal; Sparse signal; Combine p-values; GENOME-WIDE ASSOCIATION; RARE VARIANTS; HIGHER CRITICISM; COMMON DISEASES; MULTIPLE; SCHIZOPHRENIA; TESTS; RISK; REPLICATION; POWERFUL;
D O I
10.1186/s12920-020-0684-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background With the development of next generation sequencing (NGS) technology and genotype imputation methods, statistical methods have been proposed to test a set of genomic variants together to detect if any of them is associated with the phenotype or disease. In practice, within the set, there is an unknown proportion of variants truly causal or associated with the disease. There is a demand for statistical methods with high power in both dense and sparse scenarios, where the proportion of causal or associated variants is large or small respectively. Results We propose a new association test - weighted Adaptive Fisher (wAF) that can adapt to both dense and sparse scenarios by adding weights to the Adaptive Fisher (AF) method we developed before. Using simulation, we show that wAF enjoys comparable or better power to popular methods such as sequence kernel association tests (SKAT and SKAT-O) and adaptive SPU (aSPU) test. We apply wAF to a publicly available schizophrenia dataset, and successfully detect thirteen genes. Among them, three genes are supported by existing literature; six are plausible as they either relate to other neurological diseases or have relevant biological functions. Conclusions The proposed wAF method is a powerful disease-variants association test in both dense and sparse scenarios. Both simulation studies and real data analysis indicate the potential of wAF for new biological findings.
引用
收藏
页数:10
相关论文
共 48 条
[21]   Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample Case-Control Whole-Exome Sequencing Studies [J].
Lee, Seunggeun ;
Emond, Mary J. ;
Bamshad, Michael J. ;
Barnes, Kathleen C. ;
Rieder, Mark J. ;
Nickerson, Deborah A. ;
Christiani, David C. ;
Wurfel, Mark M. ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 91 (02) :224-237
[22]   Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data [J].
Li, Bingshan ;
Leal, Suzanne M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (03) :311-321
[23]   Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study [J].
Lichtenstein, Paul ;
Yip, Benjamin H. ;
Bjork, Camilla ;
Pawitan, Yudi ;
Cannon, Tyrone D. ;
Sullivan, Patrick F. ;
Hultman, Christina M. .
LANCET, 2009, 373 (9659) :234-239
[24]   Quantitative trait locus analysis for next-generation sequencing with the functional linear models [J].
Luo, Li ;
Zhu, Yun ;
Xiong, Momiao .
JOURNAL OF MEDICAL GENETICS, 2012, 49 (08) :513-524
[25]   Association studies for next-generation sequencing [J].
Luo, Li ;
Boerwinkle, Eric ;
Xiong, Momiao .
GENOME RESEARCH, 2011, 21 (07) :1099-1108
[26]   The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) [J].
MacArthur, Jacqueline ;
Bowler, Emily ;
Cerezo, Maria ;
Gil, Laurent ;
Hall, Peggy ;
Hastings, Emma ;
Junkins, Heather ;
McMahon, Aoife ;
Milano, Annalisa ;
Morales, Joannella ;
Pendlington, Zoe May ;
Welter, Danielle ;
Burdett, Tony ;
Hindorff, Lucia ;
Flicek, Paul ;
Cunningham, Fiona ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D896-D901
[27]   A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic [J].
Madsen, Bo Eskerod ;
Browning, Sharon R. .
PLOS GENETICS, 2009, 5 (02)
[28]   Finding the missing heritability of complex diseases [J].
Manolio, Teri A. ;
Collins, Francis S. ;
Cox, Nancy J. ;
Goldstein, David B. ;
Hindorff, Lucia A. ;
Hunter, David J. ;
McCarthy, Mark I. ;
Ramos, Erin M. ;
Cardon, Lon R. ;
Chakravarti, Aravinda ;
Cho, Judy H. ;
Guttmacher, Alan E. ;
Kong, Augustine ;
Kruglyak, Leonid ;
Mardis, Elaine ;
Rotimi, Charles N. ;
Slatkin, Montgomery ;
Valle, David ;
Whittemore, Alice S. ;
Boehnke, Michael ;
Clark, Andrew G. ;
Eichler, Evan E. ;
Gibson, Greg ;
Haines, Jonathan L. ;
Mackay, Trudy F. C. ;
McCarroll, Steven A. ;
Visscher, Peter M. .
NATURE, 2009, 461 (7265) :747-753
[29]   A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST) [J].
Morgenthaler, Stephan ;
Thilly, William G. .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2007, 615 (1-2) :28-56
[30]   Testing for an Unusual Distribution of Rare Variants [J].
Neale, Benjamin M. ;
Rivas, Manuel A. ;
Voight, Benjamin F. ;
Altshuler, David ;
Devlin, Bernie ;
Orho-Melander, Marju ;
Kathiresan, Sekar ;
Purcell, Shaun M. ;
Roeder, Kathryn ;
Daly, Mark J. .
PLOS GENETICS, 2011, 7 (03)