Adaptive Fisher method detects dense and sparse signals in association analysis of SNV sets

被引:2
作者
Cai, Xiaoyu [1 ]
Chang, Lo-Bin [1 ]
Potter, Jordan [2 ]
Song, Chi [3 ]
机构
[1] Ohio State Univ, Dept Stat, 1948 Neil Ave, Columbus, OH 43210 USA
[2] Kenyon Coll, Dept Math & Stat, 201 N Coll Rd, Gambier, OH 43022 USA
[3] Ohio State Univ, Coll Publ Hlth, Div Biostat, 1841 Neil Ave,208E Cunz Hall, Columbus, OH 43210 USA
基金
美国国家卫生研究院;
关键词
Genome-wide association study; Adaptive fisher; Rare variants; Common variants; Dense signal; Sparse signal; Combine p-values; GENOME-WIDE ASSOCIATION; RARE VARIANTS; HIGHER CRITICISM; COMMON DISEASES; MULTIPLE; SCHIZOPHRENIA; TESTS; RISK; REPLICATION; POWERFUL;
D O I
10.1186/s12920-020-0684-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background With the development of next generation sequencing (NGS) technology and genotype imputation methods, statistical methods have been proposed to test a set of genomic variants together to detect if any of them is associated with the phenotype or disease. In practice, within the set, there is an unknown proportion of variants truly causal or associated with the disease. There is a demand for statistical methods with high power in both dense and sparse scenarios, where the proportion of causal or associated variants is large or small respectively. Results We propose a new association test - weighted Adaptive Fisher (wAF) that can adapt to both dense and sparse scenarios by adding weights to the Adaptive Fisher (AF) method we developed before. Using simulation, we show that wAF enjoys comparable or better power to popular methods such as sequence kernel association tests (SKAT and SKAT-O) and adaptive SPU (aSPU) test. We apply wAF to a publicly available schizophrenia dataset, and successfully detect thirteen genes. Among them, three genes are supported by existing literature; six are plausible as they either relate to other neurological diseases or have relevant biological functions. Conclusions The proposed wAF method is a powerful disease-variants association test in both dense and sparse scenarios. Both simulation studies and real data analysis indicate the potential of wAF for new biological findings.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Tag-SNP analysis of the GFI1-EVI5-RPL5-FAM69 risk locus for multiple sclerosis [J].
Alcina, Antonio ;
Fernandez, Oscar ;
Ramon Gonzalez, Juan ;
Catala-Rabasa, Antonio ;
Fedetz, Maria ;
Ndagire, Dorothy ;
Leyva, Laura ;
Guerrero, Miguel ;
Arnal, Carmen ;
Delgado, Concepcion ;
Lucas, Miguel ;
Izquierdo, Guillermo ;
Matesanz, Fuencisla .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2010, 18 (07) :827-831
[2]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[3]   Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci [J].
Andreassen, O. A. ;
Harbo, H. F. ;
Wang, Y. ;
Thompson, W. K. ;
Schork, A. J. ;
Mattingsdal, M. ;
Zuber, V. ;
Bettella, F. ;
Ripke, S. ;
Kelsoe, J. R. ;
Kendler, K. S. ;
O'Donovan, M. C. ;
Sklar, P. ;
McEvoy, L. K. ;
Desikan, R. S. ;
Lie, B. A. ;
Djurovic, S. ;
Dale, A. M. .
MOLECULAR PSYCHIATRY, 2015, 20 (02) :207-214
[4]   The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies [J].
Barnett, Ian ;
Mukherjee, Rajarshi ;
Lin, Xihong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) :64-76
[5]   Analytical p-value calculation for the higher criticism test in finite-d problems [J].
Barnett, Ian J. ;
Lin, Xihong .
BIOMETRIKA, 2014, 101 (04) :964-970
[6]   Sequence Kernel Association Test for Quantitative Traits in Family Samples [J].
Chen, Han ;
Meigs, James B. ;
Dupuis, Josee .
GENETIC EPIDEMIOLOGY, 2013, 37 (02) :196-204
[7]   Next-generation genotype imputation service and methods [J].
Das, Sayantan ;
Forer, Lukas ;
Schoenherr, Sebastian ;
Sidore, Carlo ;
Locke, Adam E. ;
Kwong, Alan ;
Vrieze, Scott I. ;
Chew, Emily Y. ;
Levy, Shawn ;
McGue, Matt ;
Schlessinger, David ;
Stambolian, Dwight ;
Loh, Po-Ru ;
Iacono, William G. ;
Swaroop, Anand ;
Scott, Laura J. ;
Cucca, Francesco ;
Kronenberg, Florian ;
Boehnke, Michael ;
Abecasis, Goncalo R. ;
Fuchsberger, Christian .
NATURE GENETICS, 2016, 48 (10) :1284-1287
[8]   Innate immune response is differentially dysregulated between bipolar disease and schizophrenia [J].
de Baumont, Angelica ;
Maschietto, Mariana ;
Lima, Leandro ;
Carraro, Dirce Maria ;
Olivieri, Eloisa Helena ;
Fiorini, Alex ;
Nardin Barreta, Luiz Andre ;
Palha, Joana Almeida ;
Belmonte-de-Abreu, Paulo ;
Moreira Filho, Carlos Alberto ;
Brentani, Helena .
SCHIZOPHRENIA RESEARCH, 2015, 161 (2-3) :215-221
[9]   Robust and Powerful Tests for Rare Variants Using Fisher's Method to Combine Evidence of Association From Two or More Complementary Tests [J].
Derkach, Andriy ;
Lawless, Jerry F. ;
Sun, Lei .
GENETIC EPIDEMIOLOGY, 2013, 37 (01) :110-121
[10]  
Fan JQ, 1996, J AM STAT ASSOC, V91, P674