Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis

被引:276
|
作者
Tanaka, Y
Sano, T
Tamaoki, M
Nakajima, N
Kondo, N
Hasezawa, S [1 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Integrated Biosci, Kashiwa, Chiba 2778562, Japan
[2] Natl Inst Environm Studies, Biodivers Conservat Res Project, Tsukuba, Ibaraki 3058506, Japan
[3] Teikyo Univ Sci & Technol, Grad Sch Sci & Engn, Div Biosci, Yamanashi 4090193, Japan
关键词
D O I
10.1104/pp.105.063503
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To examine the cross talk between the abscisic acid (ABA) and ethylene signal transduction pathways, signaling events during ABA-induced stomatal closure were examined in Arabidopsis ( Arabidopsis thaliana) wild-type plants, in an ethylene-overproducing mutant (eto1-1), and in two ethylene-insensitive mutants (etr1-1 and ein3-1). Using isolated epidermal peels, stomata of wild-type plants were found to close within a few minutes in response to ABA, whereas stomata of the eto1-1 mutant showed a similar but less sensitive ABA response. In addition, ABA-induced stomatal closure could be inhibited by application of ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, stomata of the etr1-1 and ein3-1 mutants were able to close in response to concomitant ABA and ACC application, although to a lesser extent than in wild-type plants. Moreover, expression of the ABA-induced gene RAB18 was reduced following ACC application. These results indicate that ethylene delays stomatal closure by inhibiting the ABA signaling pathway. The same inhibitive effects of ethylene on stomatal closure were observed in ABA-irrigated plants and the plants in drought condition. Furthermore, upon drought stress, the rate of transpiration was greater in eto1-1 and wild-type plants exposed to ethylene than in untreated wild-type control plants, indicating that the inhibitive effects of ethylene on ABA-induced stomatal closure were also observed in planta.
引用
收藏
页码:2337 / 2343
页数:7
相关论文
共 50 条
  • [21] Inhibition of abscisic acid-induced stomatal closure by ethylene is related to the change of hydrogen peroxide levels in guard cells in broad bean
    Song, XiGui
    She, XiaoPing
    Wang, Juan
    AUSTRALIAN JOURNAL OF BOTANY, 2011, 59 (08) : 781 - 789
  • [22] REVERSAL OF ABSCISIC ACID-INDUCED STOMATAL CLOSURE BY TRANS-CINNAMIC AND PARA-COUMARIC ACID
    LALORAYA, MM
    NOZZOLILLO, C
    PUROHIT, S
    STEVENSON, L
    PLANT PHYSIOLOGY, 1986, 81 (01) : 253 - 258
  • [23] SENSITIVITY TO ABSCISIC ACID REGULATES STOMATAL OSCILLATION AND CLOSURE IN ARABIDOPSIS THALIANA
    Mu-Qing, Qiu
    Hao, Zhang
    PAKISTAN JOURNAL OF BOTANY, 2010, 42 (01) : 353 - 359
  • [24] Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase
    Li, JX
    Wang, XQ
    Watson, MB
    Assmann, SM
    SCIENCE, 2000, 287 (5451) : 300 - 303
  • [25] Hero or sidekick? Organellar reactive oxygen species during abscisic acid-induced stomatal closure
    Mishra, Divya
    PLANT PHYSIOLOGY, 2023, 192 (01) : 10 - 11
  • [26] The OPEN STOMATA1-SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis
    Wang, Pan
    Qi, Sijia
    Wang, Xiaohong
    Dou, Liru
    Jia, Meng-ao
    Mao, Tonglin
    Guo, Yushuang
    Wang, Xiangfeng
    PLANT CELL, 2023, 35 (01): : 260 - 278
  • [27] Deficient Glutathione in Guard Cells Facilitates Abscisic Acid-Induced Stomatal Closure but Does Not Affect Light-Induced Stomatal Opening
    Jahan, Md. Sarwar
    Ogawa, Ken'ichi
    Nakamura, Yoshimasa
    Shimoishi, Yasuaki
    Mori, Izumi C.
    Murata, Yoshiyuki
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2008, 72 (10) : 2795 - 2798
  • [28] Two calcium mobilizing pathways implicated within abscisic acid-induced stomatal closing in Arabidopsis thaliana
    Cousson, A.
    BIOLOGIA PLANTARUM, 2007, 51 (02) : 285 - 291
  • [29] Overexpression of the Trehalase Gene AtTRE1 Leads to Increased Drought Stress Tolerance in Arabidopsis and Is Involved in Abscisic Acid-Induced Stomatal Closure
    Van Houtte, Hilde
    Vandesteene, Lies
    Lopez-Galvis, Lorena
    Lemmens, Liesbeth
    Kissel, Ewaut
    Carpentier, Sebastien
    Feil, Regina
    Avonce, Nelson
    Beeckman, Tom
    Lunn, John E.
    Van Dijck, Patrick
    PLANT PHYSIOLOGY, 2013, 161 (03) : 1158 - 1171
  • [30] F-Box Protein DOR Functions As a Novel Inhibitory Factor for Abscisic Acid-Induced Stomatal Closure under Drought Stress in Arabidopsis
    Zhang, Yu'e
    Xu, Wenying
    Li, Zhonghui
    Deng, Xing Wang
    Wu, Weihua
    Xue, Yongbiao
    PLANT PHYSIOLOGY, 2008, 148 (04) : 2121 - 2133