Microfluidic networking: Switching multidroplet frames to improve signaling overhead

被引:11
作者
Castorina, G. [1 ]
Reno, M. [1 ]
Galluccio, L. [1 ]
Lombardo, A. [1 ]
机构
[1] Univ Catania, DIEEI, Catania, Italy
关键词
Microfluidic switch; Molecular communications; PLATFORMS;
D O I
10.1016/j.nancom.2017.08.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microfluidic networking is an emerging research field for the numerous applications it allows in the field of biomedicine. Previous literature has shown that it is indeed possible to develop purely hydrodynamic microfluidic networks by using a droplet logic. However, while the design of switches and medium access control devices is possible, up to date communications have been proposed by exploiting only pairs of droplets - a header and a payload - thus leading to single droplet frames which cause an overhead of 50%; this makes current solutions scarcely applicable to real systems. In this paper we overcome this limitation by designing and validating a microfluidic switch which employs multidroplet frames, thus significantly improving the overhead and making networking applications feasible. Simulation results carried out with the OpenFOAM software assess the effectiveness of the solution and give an overview of the maximum achievable throughput. Moreover we find out upper and lower bounds for the design of the droplets distance in each frame in such a way to define the functioning regions for the switch device. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 30 条
[11]   Communications and Switching in Microfluidic Systems: Pure Hydrodynamic Control for Networking Labs-on-a-Chip [J].
De Leo, E. ;
Donvito, L. ;
Galluccio, L. ;
Lombardo, A. ;
Morabito, G. ;
Zanoli, L. M. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (11) :4663-4677
[12]  
De Leo E., 2012, P IEEE ICC 2012
[13]  
Donvito L., 2016, IEEE ACM T NETW, V24
[14]   A software-programmable microfluidic device for automated biology [J].
Fidalgo, Luis M. ;
Maerkl, Sebastian J. .
LAB ON A CHIP, 2011, 11 (09) :1612-1619
[15]   The motion of a viscous drop through a cylindrical tube [J].
Hodges, SR ;
Jensen, OE ;
Rallison, JM .
JOURNAL OF FLUID MECHANICS, 2004, 501 :279-301
[16]   Compact model for multi-phase liquid-liquid flows in micro-fluidic devices [J].
Jousse, F ;
Lian, GP ;
Janes, R ;
Melrose, J .
LAB ON A CHIP, 2005, 5 (06) :646-656
[17]   Dielectrophoretic platforms for bio-microfluidic systems [J].
Khoshmanesh, Khashayar ;
Nahavandi, Saeid ;
Baratchi, Sara ;
Mitchell, Arnan ;
Kalantar-zadeh, Kourosh .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (05) :1800-1814
[18]   Microfluidic droplets: new integrated workflows for biological experiments [J].
Kintses, Balint ;
van Vliet, Liisa D. ;
Devenish, Sean R. A. ;
Hollfelder, Florian .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (05) :548-555
[19]  
Kovarik ML, 2012, ANAL CHEM, V84, P516, DOI [10.1021/ac202611x, 10.1021/ac3031543]
[20]   Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications [J].
Mark, Daniel ;
Haeberle, Stefan ;
Roth, Guenter ;
von Stetten, Felix ;
Zengerle, Roland .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :1153-1182