SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS WITH GENERAL WEIGHT IN THE SOBOLEV-HARDY SPACE

被引:0
作者
Zhang, Yimin [1 ]
Yang, Jun [1 ]
Shen, Yaotian [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Morse theory; the PSC condition; critical groups; Sobolev-Hardy space; NONTRIVIAL SOLUTIONS; INEQUALITIES; EXISTENCE;
D O I
10.1090/S0002-9939-2010-10468-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply Morse theory to study the existence of nontrivial solutions for nonlinear elliptic equations with general weight and Hardy potential in the Sobolev-Hardy space.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条
[31]   GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL [J].
Xiang, Changlin .
ACTA MATHEMATICA SCIENTIA, 2017, 37 (01) :58-68
[32]   A FRACTIONAL HARDY-SOBOLEV TYPE INEQUALITY WITH APPLICATIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL EXPONENT AND HARDY POTENTIAL [J].
Shen, Yansheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (07) :1901-1937
[33]   Global compactness results for quasilinear elliptic problems with combined critical Sobolev-Hardy terms [J].
Li, Yuanyuan ;
Guo, Qianqiao ;
Niu, Pengcheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) :1445-1464
[34]   INFINITELY MANY SOLUTIONS FOR THE FRACTIONAL p&q PROBLEM WITH CRITICAL SOBOLEV-HARDY EXPONENTS AND SIGN-CHANGING WEIGHT FUNCTIONS [J].
Xu, Zhiguo .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2021, 34 (9-10) :519-537
[35]   Boundary behavior of positive solutions to nonlinear elliptic equations with Hardy potential [J].
Du, Yihong ;
Wei, Lei .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 :731-749
[36]   Existence of solutions to Kirchhoff type equations involving the nonlocal p1&...&pm fractional Laplacian with critical Sobolev-Hardy exponent [J].
Chen, Wei ;
Van Thin, Nguyen .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (08) :1931-1975
[37]   Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents [J].
Huang, Xiao-Jiao ;
Wu, Xing-Ping ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) :2602-2611
[38]   Existence and multiplicity of solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents [J].
Huang, Li ;
Wu, Xing-Ping ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1916-1924
[39]   Nonlocal Elliptic Systems Involving Critical Sobolev-Hardy Exponents and Concave-convex Nonlinearities [J].
Zhang, Jinguo ;
Hsu, Tsing-San .
TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (06) :1479-1510
[40]   On a Degenerate p-Fractional Kirchhoff Equations Involving Critical Sobolev-Hardy Nonlinearities [J].
Song, Yueqiang ;
Shi, Shaoyun .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)