SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS WITH GENERAL WEIGHT IN THE SOBOLEV-HARDY SPACE

被引:0
作者
Zhang, Yimin [1 ]
Yang, Jun [1 ]
Shen, Yaotian [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Morse theory; the PSC condition; critical groups; Sobolev-Hardy space; NONTRIVIAL SOLUTIONS; INEQUALITIES; EXISTENCE;
D O I
10.1090/S0002-9939-2010-10468-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply Morse theory to study the existence of nontrivial solutions for nonlinear elliptic equations with general weight and Hardy potential in the Sobolev-Hardy space.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条
[22]   Multiplicity of Positive Solutions for a Nonlocal Elliptic Problem Involving Critical Sobolev-Hardy Exponents and Concave-Convex Nonlinearities [J].
Zhang, Jinguo ;
Hsu, Tsing-San .
ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) :679-699
[23]   Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents [J].
Liu, Hai-Yan ;
Tang, Chun-Lei .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (04) :611-631
[24]   Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential [J].
Xiang, Chang-Lin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3929-3954
[25]   Solutions of singular semilinear elliptic equations with critical weighted Hardy-Sobolev exponents [J].
Du, Qi-Wu ;
Tang, Chun-Lei .
ANNALES POLONICI MATHEMATICI, 2014, 110 (02) :109-121
[26]   Existence of Multiple Solutions for a Nonhomogeneous p-Laplacian Elliptic Equation with Critical Sobolev-Hardy Exponent [J].
Matallah, Atika ;
Litimein, Sara ;
Messirdi, Sofiane .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
[27]   GROUND STATE SOLUTIONS FOR SEMILINEAR PROBLEMS WITH A SOBOLEV-HARDY TERM [J].
Chen, Xiaoli ;
Chen, Weiyang .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
[28]   Quasilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents: nontrivial solutions [J].
Chen, Guanwei .
BOUNDARY VALUE PROBLEMS, 2015,
[29]   Existence and multiplicity of solutions to a singular elliptic system with critical Sobolev-Hardy exponents and concave-convex nonlinearities [J].
Nyamoradi, Nemat .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) :280-293
[30]   EXISTENCE OF SOLUTIONS TO THE PARABOLIC EQUATION WITH A SINGULAR POTENTIAL OF THE SOBOLEV-HARDY TYPE [J].
韩军强 ;
王永达 ;
钮鹏程 .
ActaMathematicaScientia, 2012, 32 (05) :1901-1918