Application of cluster analysis to identification flagged power quality measurements in area-related approach

被引:1
作者
Jasinski, Michal [1 ]
Sikorski, Tomasz [1 ]
Borkoswski, Klaudiusz [2 ]
机构
[1] Wroclaw Univ Technol, Katedra Podstaw Elektrotech & Elektrotechnol, Ul Pl Grunwaldzki 13, PL-50370 Wroclaw, Poland
[2] KGHM Polska Miedz SA, Ul Marii Sklodowskiej Curie 48, PL-59301 Lubin, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2020年 / 96卷 / 03期
关键词
power quality; cluster analysis; flagging concept; area related analysis;
D O I
10.15199/48.2020.03.03
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The article presents the use of data mining to power quality issue. The possibility to using cluster analysis as an appreciate tool to realize division into groups representing the measurement period for which aggregated data (within the meaning of PN EN 61000-4-30 standard) contain and do not contain aggregated voltage events is presented. The K-means algorithm sensitivity test to the identification of data containing interruptions, dips, increases and rapid voltage changes was presented. Synchronous measurements carried out in the mining plant network were used for the test data set. The obtained results allow determining the effectiveness of using cluster analysis to identify aggregated data containing voltage events. The area-related in this article is electrical power network of copper mining industry in Lover Silesia.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 13 条
  • [1] [Anonymous], 2015, 6100430 PN EN
  • [2] Cabena P., 1998, Discovering data mining: from concept to implementation
  • [3] Fayyad U, 1996, AI MAG, V17, P37
  • [4] Hand D., 2001, ADAP COMP MACH LEARN
  • [5] Data clustering: A review
    Jain, AK
    Murty, MN
    Flynn, PJ
    [J]. ACM COMPUTING SURVEYS, 1999, 31 (03) : 264 - 323
  • [6] Influence of Measurement Aggregation Algorithms on Power Quality Assessment and Correlation Analysis in Electrical Power Network with PV Power Plant
    Jasinski, Michal
    Sikorski, Tomasz
    Kostyla, Pawel
    Kaczorowska, Dominika
    Leonowicz, Zbigniew
    Rezmer, Jacek
    Szymanda, Jaroslaw
    Janik, Przemyslaw
    Bejmert, Daniel
    Rybianski, Marek
    Jasinska, Elzbieta
    [J]. ENERGIES, 2019, 12 (18)
  • [7] Clustering as a tool to support the assessment of power quality in electrical power networks with distributed generation in the mining industry
    Jasinski, Michal
    Sikorski, Tomasz
    Borkowski, Klaudiusz
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2019, 166 : 52 - 60
  • [8] Jasinski M, 2018, 2018 PROGRESS IN APPLIED ELECTRICAL ENGINEERING (PAEE)
  • [9] Kantardzic M., 2011, Data Mining: Concepts, Models, Methods, and Algorithms, VSecond, P1, DOI DOI 10.1002/9781118029145
  • [10] Lange A, 2012, PRZ ELEKTROTECHNICZN, V88, P150