Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose-Einstein condensate in a double-well potential

被引:7
作者
Wu, Yi-Piao [1 ]
Zhang, Guo-Qing [1 ,2 ]
Zhang, Cai-Xia [1 ,2 ]
Xu, Jian [3 ]
Zhang, Dan-Wei [1 ,2 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
[3] Guangdong Ocean Univ, Coll Elect & Informat Engn, Zhanjiang 524088, Peoples R China
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensate; non-Hermitian physics; nonlinear dynamics; parity-time symmetry; OPTICAL ISOLATION; OSCILLATIONS; EQUATION; CIRCUIT;
D O I
10.1007/s11467-021-1133-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the mean-field energy spectrum and dynamics in a Bose-Einstein condensate in a double-well potential with non-Hermiticity from the nonreciprocal hopping, and show that the interplay of nonreciprocity and nonlinearity leads to exotic properties. Under the two-mode and mean-field approximations, the nonreciprocal generalization of the nonlinear Schrodinger equation and Bloch equations of motion for this system are obtained. We analyze the PT phase diagram and the dynamical stability of fixed points. The reentrance of PT-symmetric phase and the reformation of stable fixed points with increasing the nonreciprocity parameter are found. Besides, we uncover a linear selftrapping effect induced by the nonreciprocity. In the nonlinear case, the self-trapping oscillation is enhanced by the nonreciprocity and then collapses in the PT-broken phase, and can finally be recovered in the reentrant PT-symmetric phase.
引用
收藏
页数:10
相关论文
共 84 条
[1]   Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons [J].
Abbarchi, M. ;
Amo, A. ;
Sala, V. G. ;
Solnyshkov, D. D. ;
Flayac, H. ;
Ferrier, L. ;
Sagnes, I. ;
Galopin, E. ;
Lemaitre, A. ;
Malpuech, G. ;
Bloch, J. .
NATURE PHYSICS, 2013, 9 (05) :275-279
[2]   Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction -: art. no. 010402 [J].
Albiez, M ;
Gati, R ;
Fölling, J ;
Hunsmann, S ;
Cristiani, M ;
Oberthaler, MK .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[3]   Non-Hermitian physics [J].
Ashida, Yuto ;
Gong, Zongping ;
Ueda, Masahito .
ADVANCES IN PHYSICS, 2020, 69 (03) :249-435
[4]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   Exceptional topology of non-Hermitian systems [J].
Bergholtz, Emil J. ;
Budich, Jan Carl ;
Kunst, Flore K. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
[7]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8
[8]   On-chip optical isolation in monolithically integrated non-reciprocal optical resonators [J].
Bi, Lei ;
Hu, Juejun ;
Jiang, Peng ;
Kim, Dong Hun ;
Dionne, Gerald F. ;
Kimerling, Lionel C. ;
Ross, C. A. .
NATURE PHOTONICS, 2011, 5 (12) :758-762
[9]   Josephson plasma oscillations and the Gross-Pitaevskii equation: Bogoliubov approach versus two-mode model [J].
Burchianti, Alessia ;
Fort, Chiara ;
Modugno, Michele .
PHYSICAL REVIEW A, 2017, 95 (02)
[10]   Model of a PT-symmetric Bose-Einstein condensate in a δ-function double-well potential [J].
Cartarius, Holger ;
Wunner, Guenter .
PHYSICAL REVIEW A, 2012, 86 (01)