Unified global optimality conditions for smooth minimization problems with mixed variables

被引:2
作者
Jeyakumar, Vaithilingam [1 ]
Srisatkunarajah, Sivakolundu [1 ]
Huy, Nguyen Quang [1 ,2 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] Hanoi Pedagog Univ, Hanoi, Vietnam
基金
澳大利亚研究理事会;
关键词
nonconvex optimization; global optimization; optimality conditions; discrete constraints; box constraints; difference of convex functions; quadratic minimization;
D O I
10.1051/ro:2008019
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we establish necessary as well as sufficient conditions for a given feasible point to be a global minimizer of smooth minimization problems with mixed variables. These problems, for instance, cover box constrained smooth minimization problems and bivalent optimization problems. In particular, our results provide necessary global optimality conditions for difference convex minimization problems, whereas our sufficient conditions give easily veri. able conditions for global optimality of various classes of nonconvex minimization problems, including the class of difference of convex and quadratic minimization problems. We discuss numerical examples to illustrate the optimality conditions.
引用
收藏
页码:361 / 370
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 2000, OPTIMIZATION COMPUTA
[2]   Global optimality conditions for quadratic optimization problems with binary constraints [J].
Beck, A ;
Teboulle, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (01) :179-188
[3]  
Cela E., 1998, The Quadratic Assignment Problem: Theory and Algorithms
[4]  
DeAngelis Pasquale., 1997, Nonconvex Optimization and Its Applications, V18, P73
[5]   Sufficient global optimality conditions for multi-extremal smooth minimisation problems with bounds and linear matrix inequality constraints [J].
Huy, N. Q. ;
Jeyakumar, V. ;
Lee, G. M. .
ANZIAM JOURNAL, 2006, 47 :439-450
[6]  
HUY NQ, GLOBALLY MINIM UNPUB
[7]   Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions [J].
Jeyakumar, V. ;
Rubinov, A. M. ;
Wu, Z. Y. .
MATHEMATICAL PROGRAMMING, 2007, 110 (03) :521-541
[8]   Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints [J].
Jeyakumar, V. ;
Rubinov, A. M. ;
Wu, Z. Y. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 36 (03) :471-481
[9]  
JEYAKUMAR V, 2008, OPTIMIZATIO IN PRESS, DOI DOI 10.1007/S11590-007-0053-6
[10]   QUADRATIC O/1 OPTIMIZATION AND A DECOMPOSITION APPROACH FOR THE PLACEMENT OF ELECTRONIC-CIRCUITS [J].
JUNGER, M ;
MARTIN, A ;
REINELT, G ;
WEISMANTEL, R .
MATHEMATICAL PROGRAMMING, 1994, 63 (03) :257-279