A Bayesian network meta-analysis for binary outcome: how to do it

被引:57
|
作者
Greco, Teresa [1 ,2 ]
Landoni, Giovanni [1 ]
Biondi-Zoccai, Giuseppe [3 ,4 ]
D'Ascenzo, Fabrizio [4 ,5 ]
Zangrillo, Alberto [1 ]
机构
[1] Ist Sci San Raffaele, Anaesthesia & Intens Care Dept, Via Olgettina 60, I-20132 Milan, Italy
[2] Univ Milan, Sect Med Stat & Biometry Giulio A Maccacaro, Dept Occupat & Environm Hlth, Milan, Italy
[3] Univ Roma La Sapienza, Dept Med Surg Sci & Biotechnol, Rome, Italy
[4] Meta Anal & Evidence Based Med Training Cardiol M, Ospedaletti, Italy
[5] Citta Salute & Sci, Dept Internal Med, Div Cardiol, Turin, Italy
关键词
anaesthetic agents; Bayesian; binary outcomes; hierarchical models; mixed treatment comparison; network meta-analysis; WinBUGS; MIXED TREATMENT COMPARISONS; ISPOR TASK-FORCE; STATISTICAL-METHODS; ECOLOGICAL BIAS; META-REGRESSION; PATIENT-LEVEL; HETEROGENEITY; INCONSISTENCY; LIKELIHOOD; PERFORMANCE;
D O I
10.1177/0962280213500185
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This study presents an overview of conceptual and practical issues of a network meta-analysis (NMA), particularly focusing on its application to randomised controlled trials with a binary outcome of interest. We start from general considerations on NMA to specifically appraise how to collect study data, structure the analytical network and specify the requirements for different models and parameter interpretations, with the ultimate goal of providing physicians and clinician-investigators a practical tool to understand pros and cons of NMA. Specifically, we outline the key steps, from the literature search to sensitivity analysis, necessary to perform a valid NMA of binomial data, exploiting Markov Chain Monte Carlo approaches. We also apply this analytical approach to a case study on the beneficial effects of volatile agents compared to total intravenous anaesthetics for surgery to further clarify the statistical details of the models, diagnostics and computations. Finally, datasets and models for the freeware WinBUGS package are presented for the anaesthetic agent example.
引用
收藏
页码:1757 / 1773
页数:17
相关论文
共 50 条
  • [31] Bayesian heterogeneity in a meta-analysis with two studies and binary data
    Martel, M.
    Negrin, M. A.
    Vazquez-Polo, F. J.
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (13) : 2760 - 2776
  • [32] Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness
    Zhang, Jing
    Chu, Haitao
    Hong, Hwanhee
    Virnig, Beth A.
    Carlin, Bradley P.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (05) : 2227 - 2243
  • [33] A Bayesian hierarchical model for network meta-analysis of multiple diagnostic tests
    Ma, Xiaoye
    Lian, Qinshu
    Chu, Haitao
    Ibrahim, Joseph G.
    Chen, Yong
    BIOSTATISTICS, 2018, 19 (01) : 87 - 102
  • [34] Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes
    Achana, Felix A.
    Cooper, Nicola J.
    Bujkiewicz, Sylwia
    Hubbard, Stephanie J.
    Kendrick, Denise
    Jones, David R.
    Sutton, Alex J.
    BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
  • [35] Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes
    Felix A Achana
    Nicola J Cooper
    Sylwia Bujkiewicz
    Stephanie J Hubbard
    Denise Kendrick
    David R Jones
    Alex J Sutton
    BMC Medical Research Methodology, 14
  • [36] Pharmacological Therapies for Osteoporosis: A Bayesian Network Meta-Analysis
    Shen, Jiping
    Ke, Zheng
    Dong, Shuangshuang
    Lv, Minzhi
    Yuan, Ying
    Song, Le
    Wu, Kefen
    Xu, Kan
    Hu, Yu
    MEDICAL SCIENCE MONITOR, 2022, 28
  • [37] A comparison of arm-based and contrast-based models for network meta-analysis
    White, Ian R.
    Turner, Rebecca M.
    Karahalios, Amalia
    Salanti, Georgia
    STATISTICS IN MEDICINE, 2019, 38 (27) : 5197 - 5213
  • [38] Basic concepts for network meta-analysis
    Catala-Lopez, Ferran
    Tobias, Aurelio
    Roque, Marta
    ATENCION PRIMARIA, 2014, 46 (10): : 573 - 581
  • [39] Multiplicative interaction in network meta-analysis
    Piepho, Hans-Peter
    Madden, Laurence V.
    Williams, Emlyn R.
    STATISTICS IN MEDICINE, 2015, 34 (04) : 582 - 594
  • [40] Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis
    Loukia M. Spineli
    Chrysostomos Kalyvas
    BMC Medical Research Methodology, 20