A Bayesian network meta-analysis for binary outcome: how to do it

被引:57
|
作者
Greco, Teresa [1 ,2 ]
Landoni, Giovanni [1 ]
Biondi-Zoccai, Giuseppe [3 ,4 ]
D'Ascenzo, Fabrizio [4 ,5 ]
Zangrillo, Alberto [1 ]
机构
[1] Ist Sci San Raffaele, Anaesthesia & Intens Care Dept, Via Olgettina 60, I-20132 Milan, Italy
[2] Univ Milan, Sect Med Stat & Biometry Giulio A Maccacaro, Dept Occupat & Environm Hlth, Milan, Italy
[3] Univ Roma La Sapienza, Dept Med Surg Sci & Biotechnol, Rome, Italy
[4] Meta Anal & Evidence Based Med Training Cardiol M, Ospedaletti, Italy
[5] Citta Salute & Sci, Dept Internal Med, Div Cardiol, Turin, Italy
关键词
anaesthetic agents; Bayesian; binary outcomes; hierarchical models; mixed treatment comparison; network meta-analysis; WinBUGS; MIXED TREATMENT COMPARISONS; ISPOR TASK-FORCE; STATISTICAL-METHODS; ECOLOGICAL BIAS; META-REGRESSION; PATIENT-LEVEL; HETEROGENEITY; INCONSISTENCY; LIKELIHOOD; PERFORMANCE;
D O I
10.1177/0962280213500185
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This study presents an overview of conceptual and practical issues of a network meta-analysis (NMA), particularly focusing on its application to randomised controlled trials with a binary outcome of interest. We start from general considerations on NMA to specifically appraise how to collect study data, structure the analytical network and specify the requirements for different models and parameter interpretations, with the ultimate goal of providing physicians and clinician-investigators a practical tool to understand pros and cons of NMA. Specifically, we outline the key steps, from the literature search to sensitivity analysis, necessary to perform a valid NMA of binomial data, exploiting Markov Chain Monte Carlo approaches. We also apply this analytical approach to a case study on the beneficial effects of volatile agents compared to total intravenous anaesthetics for surgery to further clarify the statistical details of the models, diagnostics and computations. Finally, datasets and models for the freeware WinBUGS package are presented for the anaesthetic agent example.
引用
收藏
页码:1757 / 1773
页数:17
相关论文
共 50 条
  • [21] Efficient network meta-analysis: A confidence distribution approach
    Yang, Guang
    Liu, Dungang
    Liu, Regina Y.
    Xie, Minge
    Hoaglin, David C.
    STATISTICAL METHODOLOGY, 2014, 20 : 105 - 125
  • [22] Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis
    Spineli, Loukia M.
    Kalyvas, Chrysostomos
    BMC MEDICAL RESEARCH METHODOLOGY, 2020, 20 (01)
  • [23] A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta-analysis
    Turner, N. L.
    Dias, S.
    Ades, A. E.
    Welton, N. J.
    STATISTICS IN MEDICINE, 2015, 34 (12) : 2062 - 2080
  • [24] Twenty years of network meta-analysis: Continuing controversies and recent developments
    Ades, A. E.
    Welton, Nicky J.
    Dias, Sofia
    Phillippo, David M.
    Caldwell, Deborah M.
    RESEARCH SYNTHESIS METHODS, 2024, 15 (05) : 702 - 727
  • [25] GetReal in network meta-analysis: a review of the methodology
    Efthimiou, Orestis
    Debray, Thomas P. A.
    van Valkenhoef, Gert
    Trelle, Sven
    Panayidou, Klea
    Moons, Karel G. M.
    Reitsma, Johannes B.
    Shang, Aijing
    Salanti, Georgia
    RESEARCH SYNTHESIS METHODS, 2016, 7 (03) : 236 - 263
  • [26] Hypothesis testing in Bayesian network meta-analysis
    Lorenz Uhlmann
    Katrin Jensen
    Meinhard Kieser
    BMC Medical Research Methodology, 18
  • [27] How To Read a Network Meta-analysis
    Nino, Angie K. Puerto
    Brignardello-Petersen, Romina
    EUROPEAN UROLOGY FOCUS, 2023, 9 (05): : 701 - 704
  • [28] 'Arm-based' parameterization for network meta-analysis
    Hawkins, Neil
    Scott, David A.
    Woods, Beth
    RESEARCH SYNTHESIS METHODS, 2016, 7 (03) : 306 - 313
  • [29] A generalized pairwise modelling framework for network meta-analysis
    Doi, Suhail A. R.
    Barendregt, Jan J.
    INTERNATIONAL JOURNAL OF EVIDENCE-BASED HEALTHCARE, 2018, 16 (04): : 187 - 194
  • [30] Using structural equation modeling for network meta-analysis
    Tu, Yu-Kang
    Wu, Yun-Chun
    BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17