A Bayesian network meta-analysis for binary outcome: how to do it

被引:62
作者
Greco, Teresa [1 ,2 ]
Landoni, Giovanni [1 ]
Biondi-Zoccai, Giuseppe [3 ,4 ]
D'Ascenzo, Fabrizio [4 ,5 ]
Zangrillo, Alberto [1 ]
机构
[1] Ist Sci San Raffaele, Anaesthesia & Intens Care Dept, Via Olgettina 60, I-20132 Milan, Italy
[2] Univ Milan, Sect Med Stat & Biometry Giulio A Maccacaro, Dept Occupat & Environm Hlth, Milan, Italy
[3] Univ Roma La Sapienza, Dept Med Surg Sci & Biotechnol, Rome, Italy
[4] Meta Anal & Evidence Based Med Training Cardiol M, Ospedaletti, Italy
[5] Citta Salute & Sci, Dept Internal Med, Div Cardiol, Turin, Italy
关键词
anaesthetic agents; Bayesian; binary outcomes; hierarchical models; mixed treatment comparison; network meta-analysis; WinBUGS; MIXED TREATMENT COMPARISONS; ISPOR TASK-FORCE; STATISTICAL-METHODS; ECOLOGICAL BIAS; META-REGRESSION; PATIENT-LEVEL; HETEROGENEITY; INCONSISTENCY; LIKELIHOOD; PERFORMANCE;
D O I
10.1177/0962280213500185
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This study presents an overview of conceptual and practical issues of a network meta-analysis (NMA), particularly focusing on its application to randomised controlled trials with a binary outcome of interest. We start from general considerations on NMA to specifically appraise how to collect study data, structure the analytical network and specify the requirements for different models and parameter interpretations, with the ultimate goal of providing physicians and clinician-investigators a practical tool to understand pros and cons of NMA. Specifically, we outline the key steps, from the literature search to sensitivity analysis, necessary to perform a valid NMA of binomial data, exploiting Markov Chain Monte Carlo approaches. We also apply this analytical approach to a case study on the beneficial effects of volatile agents compared to total intravenous anaesthetics for surgery to further clarify the statistical details of the models, diagnostics and computations. Finally, datasets and models for the freeware WinBUGS package are presented for the anaesthetic agent example.
引用
收藏
页码:1757 / 1773
页数:17
相关论文
共 66 条
[1]   Bayesian methods for evidence synthesis in cost-effectiveness analysis [J].
Ades, AE ;
Sculpher, M ;
Sutton, A ;
Abrams, K ;
Cooper, N ;
Welton, N ;
Lu, GB .
PHARMACOECONOMICS, 2006, 24 (01) :1-19
[2]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267
[3]  
[Anonymous], 2016, NICE DSU technical support document 4: inconsistency in networks of evidence based on randomised controlled trials
[4]  
[Anonymous], 4 NICE DSU
[5]  
[Anonymous], 3 NICE DSU
[6]  
[Anonymous], ARXIV11020242V3
[7]   Deviance information criterion for comparing stochastic volatility models [J].
Berg, A ;
Meyer, R ;
Yu, J .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2004, 22 (01) :107-120
[8]   Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head [J].
Berlin, JA ;
Santanna, J ;
Schmid, CH ;
Szczech, LA ;
Feldman, HI .
STATISTICS IN MEDICINE, 2002, 21 (03) :371-387
[9]   A comparison of statistical methods for meta-analysis [J].
Brockwell, SE ;
Gordon, IR .
STATISTICS IN MEDICINE, 2001, 20 (06) :825-840
[10]   The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials [J].
Bucher, HC ;
Guyatt, GH ;
Griffith, LE ;
Walter, SD .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1997, 50 (06) :683-691